植物生态学报 ›› 2006, Vol. 30 ›› Issue (2): 261-267.DOI: 10.17521/cjpe.2006.0035
接受日期:
2005-02-23
发布日期:
2006-03-30
通讯作者:
曹卫星
作者简介:
*E-mail: caow@njauedu.cn.基金资助:
TIAN Yong_Chao, ZHU Yan, YAO Xia, ZHOU Chang_Jun, CAO Wei_Xing*()
Accepted:
2005-02-23
Published:
2006-03-30
Contact:
CAO Wei_Xing
摘要:
研究了不同土壤水氮条件下水稻(Oryza sativa)叶片气孔导度与冠层光谱反射特征的量化关系。结果表明,不同水分处理下,水稻不同叶位气孔导度变化趋势为:GsL1>GsL2>GsL3>GsL4。高于W3水分条件下,高氮处理的叶片气孔导度高于低氮处理,而低于W3水分条件下,高低氮处理条件下叶片气孔导度差异不显著。发现比值指数R(1 650,760)与不同叶位叶片及不同层次叶片气孔导度的相关性大小为:GsL1>GsL12>GsL123>GsL1234>GsL2>GsL3>GsL4(水稻顶部自上而下第一、二、三、四叶以及自上而下顶部2张、3张、4张叶片的气孔导度值分别表示为:GsL1、GsL2、GsL3、GsL4、GsL12、GsL123和GsL1234),而顶1叶气孔导度与叶面积指数的乘积(冠层叶片气孔导度)同比值指数R(1 650,760)相关程度更高。R(1 650,760)与顶1叶和冠层叶片气孔导度之间皆呈极显著的幂函数负相关。利用不同年份的不同水稻试验对两者的监测模型进行了检验,模型的检验误差RMSE分别为0.05和0.24,表明比值指数R(1 650,760)可以较好地监测不同水氮条件下水稻叶片的气孔开闭特征。
田永超, 朱艳, 姚霞, 周昌俊, 曹卫星. 水稻叶片气孔导度与冠层反射光谱的定量关系分析. 植物生态学报, 2006, 30(2): 261-267. DOI: 10.17521/cjpe.2006.0035
TIAN Yong_Chao, ZHU Yan, YAO Xia, ZHOU Chang_Jun, CAO Wei_Xing. QUANTITATIVE RELATIONSHIPS BETWEEN CANOPY SPECTRAL REFLECTANCE AND LEAF STOMATAL CONDUCTANCE IN RICE. Chinese Journal of Plant Ecology, 2006, 30(2): 261-267. DOI: 10.17521/cjpe.2006.0035
图1 拔节期(A)、灌浆期(B)不同水分条件下水稻不同叶位叶片的气孔导度
Fig.1 Leaf stomatal conductance in different leaf positions at jointing (A) and filling (B) of rice under varied water treatments
图2 拔节期不同水氮条件下水稻叶片的气孔导度(A)和比值指数R(1 650,760)(B)
Fig.2 Stomatal conductance on the first leaf from top (A) and canopy ratio index R(1 650,760) (B) at jointing of rice under varied water and nitrogen treatments
图3 拔节期不同水氮条件下水稻叶片叶绿素含量(A)和含水量(B)
Fig.3 Leaf chlorophlly content (SPAD value) on the first leaf from top (A) and canopy leaf water content (B) at jointing of rice under varied water and nitrogen treatments
图4 拔节期不同水氮条件下水稻叶面积指数(A)和修改型二次土壤调整指数(B)
Fig.4 Leaf area index (LAI) (A) and the second modified SAVI2 (MSAVI2)(B) at jointing of rice under varied water and nitrogen treatments
GsL1 | GsL2 | GsL3 | GsL4 | GsL12 | GsL123 | GsL1234 | ||
---|---|---|---|---|---|---|---|---|
R(1 650, 760) | 拔节期Jointing | 0.88** | 0.63** | 0.32 | 0.11 | 0.86** | 0.83** | 0.77** |
抽穗期Heading | 0.86** | 0.68** | 0.30 | 0.17 | 0.84** | 0.78** | 0.74** | |
灌浆期Filling | 0.87** | 0.66** | 0.28 | 0.23 | 0.85** | 0.82** | 0.78** |
表1 不同层次水稻叶片气孔导度与冠层反射光谱的相关性(n=35)
Table 1 Correlation coefficient between canopy reflectance and leaf stomatal conductance of different leaf layers in rice (n=35)
GsL1 | GsL2 | GsL3 | GsL4 | GsL12 | GsL123 | GsL1234 | ||
---|---|---|---|---|---|---|---|---|
R(1 650, 760) | 拔节期Jointing | 0.88** | 0.63** | 0.32 | 0.11 | 0.86** | 0.83** | 0.77** |
抽穗期Heading | 0.86** | 0.68** | 0.30 | 0.17 | 0.84** | 0.78** | 0.74** | |
灌浆期Filling | 0.87** | 0.66** | 0.28 | 0.23 | 0.85** | 0.82** | 0.78** |
图7 水稻顶1叶气孔导度实测值与预测值的比较
Fig.7 Comparison of measured with predicted stomatal conductance of the first leaf in rice under different soil water and nitrogen conditions
图8 水稻冠层叶片气孔导度实测值与预测值的比较 图例见图7 Ledgends see Fig. 7
Fig.8 Comparison of measured with predicted canopy leaf stomatal conductance of rice under different soil water and nitrogen conditions
[1] | Carter GA (1998). Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sensing of Environment, 63,61-72. |
[2] | Cropscan Inc. (2000). Data Logger Controller, User's Guide and Technical Reference.. Cropscan Inc., Rochester, MN, |
[3] | Eastin JD, Sullivan CJ (1984). Environmental stress influences on plant persistence, physiology, and production In: Tesar MB ed. Physiological Basis of Crop Growth and Development. ASA, Madison,201-238. |
[4] | Filella I, Penuelas J (1994). The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing, 15,1459-1470. |
[5] | Flexas J, Escalona JM, Evain S, Gulias J, Moya I, Osmond CB, Medrano H (2002). Steady_state chlorophyll fluorescence ( F s) measurements as a tool to follow variations of net CO 2 assimilation and stomatal conductance during water_stress in C 3 plants . Physiologia plantrum, 114,231-240. |
[6] | Jensen A, Lorenzen B (1990). Radiometric estimation of biomass and nitrogen content of barley grown at different nitrogen levels. International Journal of Remote Sensing, 11,1809-1820. |
[7] | Lillesand TM, Kiefer RW (1994). Remote Sensing and Image Interpretation 3rd Edn. John Wiley & Sons, Inc, |
[8] | Liu WD (刘伟东), Xiang YQ (项月琴), Zheng LF (郑兰芬), Tong QX (童庆禧), Wu CS (吴长山) (2000). Relationships between rice LAI, CH.D and hyperspectra data . Journal of Remote Sensing (遥感学报), 4,279-283. (in Chinese with English abstract) |
[9] | Myneni RB, Ganapol BD, Asrar G (1992). Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies. Remote Sensing of Environment, 42,217-238. |
[10] | Penuelas J, Filella I, Gamon JA (1995). Assessment of photosynthetic radiation_use efficiency with spectral reflectance. New Phytologist, 131,291-296. |
[11] | Qi J, Chehbouni A, Muete AR, Kerr YH, Sorooshian S (1994). A modified soil adjusted vegetation index. Remot Sensing of Environment, 48,119-126. |
[12] | Thiemann S, Kaufmann H (2000). Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS_1C satellite data in the Mecklenburg lake district. Germany Remote Sensing of Environment, 73,227-235. |
[13] | Tian Q, Tong Q, Guo X, Zhao C (2001). Spectroscopic determination of wheat water status using 1650_1850 nm spectral absorption features. International Journal of Remote Sensing, 22,2329-2338. |
[14] | Verma SB, Sellers PJ, Walthall CL, Hall FG, Kim J, Goetz SJ (1993). Photosynthesis and stomatal conductance related to reflectance on the canopy scale. Remote Sensing of Environment, 44,103-116. |
[15] | Zhang JH (张佳华), Fu CB (符淙斌), Wang CY (王长耀) (2000). Study on stomatal conductance distribution of winter wheat in regional scale using remote sensing information. Acta Meteorologica Sinica (气象学报), 58,347-353. (in Chinese with English abstract) |
[16] | Zhang JH (张佳华), Wang CY (王长耀) (1999). Water deficit crop yield model based on remote sensing and crop photosynthesis. Journal of Hydraulic engineering (水利学报), 8,35-39. (in Chinese with English abstract) |
[1] | 朱玉英 张华敏 丁明军 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[3] | 文可, 姚焕玫, 龚祝清, 纳泽林, 韦毅明, 黄以, 陈华权, 廖鹏任, 唐丽萍. 水淹频率变化对鄱阳湖增强型植被指数的影响[J]. 植物生态学报, 2022, 46(2): 148-161. |
[4] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[5] | 徐梦, 田大栓, 王易恒, 何奕成, 崔清国, 李跃林, 申小莉, 原作强, 王扬. 国家尺度自然保护地生态系统联网监测指标体系构建与应用研究[J]. 植物生态学报, 2022, 46(10): 1219-1233. |
[6] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[7] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[8] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[9] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[10] | 周明星, 李登秋, 邹建军. 基于稠密Landsat数据的邛崃山大熊猫栖息地植被变化研究[J]. 植物生态学报, 2021, 45(4): 355-369. |
[11] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[12] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[13] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[14] | 肖文宏, 周青松, 朱朝东, 吴东辉, 肖治术. 野生动物监测技术和方法应用进展与展望[J]. 植物生态学报, 2020, 44(4): 409-417. |
[15] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19