植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 73-81.DOI: 10.3724/SP.J.1258.2011.00073
李秀媛1, 刘西平1,*(), Hang DUONG2, Roger KJELGREN2
收稿日期:
2010-04-16
接受日期:
2010-08-31
出版日期:
2011-04-16
发布日期:
2011-01-24
通讯作者:
刘西平
作者简介:
*E-mail: xpliuderen@163.com
LI Xiu-Yuan1, LIU Xi-Ping1,*(), Hang DUONG2, Roger KJELGREN2
Received:
2010-04-16
Accepted:
2010-08-31
Online:
2011-04-16
Published:
2011-01-24
Contact:
LIU Xi-Ping
摘要:
采取盆栽、人工控水的方式, 研究并比较了美国本土海滨桤木(Alnus maritima)和薄叶桤木(A. incana)的气孔导度(Gs)、叶片水势(ψleaf)以及渗透调节能力对土壤水分条件的响应, 以探讨引起两种桤木生态分布差异巨大的生理生态原因。结果表明: 1)正常水分条件下, 海滨桤木的Gs低于薄叶桤木, 其与大气温度、相对湿度和水蒸气亏缺等气象因子的相关性低于薄叶桤木; 干旱胁迫下, 海滨桤木的Gs对其自身ψleaf下降信号的敏感度低于薄叶桤木; 复水后, 其Gs恢复更为缓慢。2)正常水分条件下, 海滨桤木的ψleaf高于薄叶桤木, 且引起气孔关闭的ψleaf临界值较高; 干旱胁迫下, 海滨桤木的ψleaf下降幅度高于薄叶桤木。3)正常水分条件下, 海滨桤木和薄叶桤木的渗透调节能力无显著差异; 干旱胁迫下, 尽管两种桤木均表现出饱和状态渗透势(ψssat)下降、膨压与水势关系的最大变化率降低、初始失膨点渗透势(ψstlp)增加、细胞渗透调节能力范围(ψssat-ψstlp, Dψs)减小的趋势, 但与薄叶桤木相比, 海滨桤木的ψstlp较高, Dψs较小。从以上生理生态指标可以看出, 较高的叶片水势、较低的气孔调节能力、干旱下较低的渗透调节能力是造成海滨桤木分布范围狭小的重要原因。
李秀媛, 刘西平, Hang DUONG, Roger KJELGREN. 美国海滨桤木和薄叶桤木水分生理特性的比较. 植物生态学报, 2011, 35(1): 73-81. DOI: 10.3724/SP.J.1258.2011.00073
LI Xiu-Yuan, LIU Xi-Ping, Hang DUONG, Roger KJELGREN. Comparison of water-related physiological characteristics of Alnus maritima and A. incana growing in America. Chinese Journal of Plant Ecology, 2011, 35(1): 73-81. DOI: 10.3724/SP.J.1258.2011.00073
图1 正常水分条件下海滨桤木和薄叶桤木气孔导度(Gs) (A)和叶片水势(ψleaf) (B)的日变化。a、b表示相同时间下海滨桤木和薄叶桤木Gs或ψleaf的差异极显著(Duncan, p < 0.01)。
Fig. 1 Diurnal variation of stomotal conductance (Gs) (A) and leaf water potential (ψleaf ) (B) of Alnus maritima and A. incana under normal water condition. a and b indicate significance of Gs or ψleaf between A. maritima and A. incana at the same time at 0. 01 level by Duncan test.
水汽压亏缺 Vapor pressure deificit | 太阳辐射 Solar radiation | 空气温度 Air temperature | 相对湿度 Relative humidity | |
---|---|---|---|---|
海滨桤木 Alnus maritima | -0.549** | 0.027 | -0.560** | 0.501** |
薄叶桤木 A. incana | -0.695** | 0.096 | -0.720** | 0.700** |
表1 海滨桤木和薄叶桤木的气孔导度(Gs)与气象因子(水汽压亏缺、太阳辐射、空气温度和相对湿度)的相关系数
Table 1 Correlation coefficients between stomatal conductance (Gs) of Alnus maritima and A. incana and meteorological variables (vapor pressure deficit, solar radiation, air temperature and relative humidity)
水汽压亏缺 Vapor pressure deificit | 太阳辐射 Solar radiation | 空气温度 Air temperature | 相对湿度 Relative humidity | |
---|---|---|---|---|
海滨桤木 Alnus maritima | -0.549** | 0.027 | -0.560** | 0.501** |
薄叶桤木 A. incana | -0.695** | 0.096 | -0.720** | 0.700** |
图3 水分胁迫下海滨桤木和薄叶桤木气孔导度(Gs)和叶片水势(ψleaf)的变化。A、B、C、D分别表示充分灌溉和干旱胁迫处理Gs上午测量值, 充分灌溉和干旱胁迫处理Gs下午测量值。E和F分别表示充分灌溉处理和干旱胁迫处理的ψleaf。a、b、c、d表示海滨桤木和薄叶桤木间的极显著差异(Duncan, p < 0.01)。
Fig. 3 Variation of stomatal conductance (Gs) and leaf water potential (ψleaf) of Alnus maritima and A. incana under drought stress treatments. A, B, C and D represent the Gs mid-morning value of well watered treatment, drought stress treatment, and the mid-afternoon Gs value of these two treatments, respectively. E and F represent the ψleaf values of well watered and drought stress treatments, respectively. a, b, c and d indicate the significance between A. maritima and A. incana at 0. 01 level by Duncan test.
树种 Species | 天数 Day | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
海滨桤木 Alnus maritima | 14.01 | 24.11 | 26.34 | 41.00 | 61.25 | 72.41 |
薄叶桤木 A. incana | 0.98 | 3.51 | 10.03 | 35.69 | 67.10 | 88.04 |
表2 干旱胁迫下海滨桤木和薄叶桤木气孔导度(Gs)的下降百分比(1- Gs干旱胁迫处理/ Gs充分灌溉处理) (%)
Table 2 Decrease in percentage of stomatal conductance (Gs) under drought stress in Alnus maritima and A. incana (1- Gsdrought- stressed/ Gswell-watered) (%)
树种 Species | 天数 Day | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
海滨桤木 Alnus maritima | 14.01 | 24.11 | 26.34 | 41.00 | 61.25 | 72.41 |
薄叶桤木 A. incana | 0.98 | 3.51 | 10.03 | 35.69 | 67.10 | 88.04 |
图4 干旱胁迫与充分灌溉处理下海滨桤木和薄叶桤木气孔导度比值(Gs drought stressed / Gs well watered)和叶片水势比值(ψleaf drought stressed / ψleaf well watered)的关系。——表示海滨桤木的线性回归线; 表示薄叶桤木线性回归线。
Fig. 4 Relationship between the water potential (ψleaf) ratio of drought stressed to well watered and the stomatal conductance (Gs) ratio of drought stressed to well watered for Alnus maritima and A. incana. —— and represent the regression lines of A. maritima and A. incana, respectively.
图5 复水过程中海滨桤木和薄叶桤木气孔导度的变化。A、B、C和D见图3。a、b、c和d表示同一天下海滨桤木和薄叶桤木Gs间的显著差异(Duncan, p < 0.05)。
Fig. 5 Changes in stomatal conductance (Gs) of Alnus maritima and A. incana after well-rewatered treatment. A, B, C and D see Fig. 3. a, b, c and d indicate significance between A. maritima and A. incana at the same day at 0.05 level by Duncan test.
处理 Treatment | 饱和渗透势 Solute potential at full turgor ψssat | 失膨点渗透势 Solute potential at turgor loss point ψstlp | 渗透势调节范围 Dψs (ψssat-ψstlp) |
---|---|---|---|
海滨桤木-充分灌溉 Alnus maritime-well watered | -0.92a | -1.29a | 0.38a |
海滨桤木-干旱胁迫 A. maritime-drought stress | -1.08b | -1.11c | 0.03c |
薄叶桤木-充分灌溉 A. incana-well watered | -0.91a | -1.35a | 0.44a |
薄叶桤木-干旱胁迫 A. incana-drought stress | -1.04b | -1.27b | 0.24b |
表3 海滨桤木和薄叶桤木的渗透调节参数(MPa)
Table 3 Parameters of osmotic adjustment for Alnus maritima and A. incana (MPa)
处理 Treatment | 饱和渗透势 Solute potential at full turgor ψssat | 失膨点渗透势 Solute potential at turgor loss point ψstlp | 渗透势调节范围 Dψs (ψssat-ψstlp) |
---|---|---|---|
海滨桤木-充分灌溉 Alnus maritime-well watered | -0.92a | -1.29a | 0.38a |
海滨桤木-干旱胁迫 A. maritime-drought stress | -1.08b | -1.11c | 0.03c |
薄叶桤木-充分灌溉 A. incana-well watered | -0.91a | -1.35a | 0.44a |
薄叶桤木-干旱胁迫 A. incana-drought stress | -1.04b | -1.27b | 0.24b |
处理 Treatment | 海滨桤木-充分灌溉 Alnus maritime-well watered | 海滨桤木-干旱胁迫 A. maritime-drought stress | 薄叶桤木-充分灌溉 A. incana-well watered | 薄叶桤木-干旱胁迫 A. incana-drought stress |
---|---|---|---|---|
R2 | 0.996 | 0.997 | 0.998 | 0.997 |
k | 0.864a | 0.793b | 0.768b | 0.685b |
表4 海滨桤木和薄叶桤木叶片水势(ψleaf)和膨压(ψp )直线斜率方程(k)
Table 4 The slopes (k) of linear equation between leaf water potential (ψleaf ) and turgor (ψp ) of Alnus maritima and A. incana
处理 Treatment | 海滨桤木-充分灌溉 Alnus maritime-well watered | 海滨桤木-干旱胁迫 A. maritime-drought stress | 薄叶桤木-充分灌溉 A. incana-well watered | 薄叶桤木-干旱胁迫 A. incana-drought stress |
---|---|---|---|---|
R2 | 0.996 | 0.997 | 0.998 | 0.997 |
k | 0.864a | 0.793b | 0.768b | 0.685b |
[1] | Cambell GS, Norman JM (1998). An Introduction to Envi- ronmental Biophysics. Springer-Verlag Press, New York. 40-45. |
[2] | Furlow JJ (1979). The systematics of the American species of Alnus (Betulaceae). Rhodora, 81, 151-248. |
[3] | Guo LS (郭连生), Tian YL (田有亮) (1998). Study on drought-resistance evaluation of common afforestation species in North China by PV technique. Journal of Innermongolia Forestry College (内蒙古林学院学报), 20, 1-8. (in Chinese with English abstract). |
[4] | Guo WH (郭卫华), Li B (李波), Zhang X (张新), Wang RQ (王仁卿) (2007). The impact of water stress on transpiration indices in Hippophae rhamnoides and Caragana intermedia. Acta Ecologica Sinica (生态学报), 27, 4132-4140. (in Chinese with English abstract) |
[5] | Han G (韩刚), Li YJ (李彦瑾), Sun DX (孙德祥), Zhao Z (赵忠) (2008). The response of pressure-volume curve water parameters of four desert shrub seedlings to drought stress. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 1422-1428. (in Chinese with English abstract) |
[6] | Hennessey TC, Bair LK, McNew RW (1985). Variation in response among three Alnus spp. clones to progressive water stress. Plant and Soil, 87, 135-141. |
[7] | Kjelgren R, Wang LX, Joyce D (2009). Water deficit stress responses of three native Australian ornamental herbaceous wildflower species for water-wise landscapes. American Society for Horticultural Science, 44, 1358-1365. |
[8] | Kramer PJ (1983). Water Relations of Plants. Academic Press, New York. 102-124. |
[9] | Li HZ (李华祯), Yao BQ (姚保强), Yang CQ (杨传强), Qi XM (齐晓明), Cao WY (曹文玉), Shen GH (沈冠华), Tang XK (汤兴坤) (2006). Study on water physiology and anti-drought characteristics of four commercial forest trees. Journal of Shandong Forestry Science and Technology (山东林业科技), 2, 9-11. (in Chinese with English abstract) |
[10] | Liu LM (刘利民), Qi H (齐华), Luo XL (罗新兰), Zhang X (张旋) ( 2008). Coordination effect between vapor water loss through plant stomata and liquid water supply in soil- plant-atmosphere continuum (SPAC): a review. Chinese Journal of Applied Ecology (应用生态学报), 19, 2067-2073. (in Chinese with English abstract) |
[11] | McDowell N, Pockman WT, Allen CD (2008). Mechanism of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Physiologist, 178, 719-739. |
[12] | McNaughton KG, Jarvis PG (1991). Effects of spatial scale on stomatal control of transpiration. Agricultural and Forest Meteorology, 54, 279-302. |
[13] |
Robichaux RH (1984). Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia, 65, 75-81.
DOI URL PMID |
[14] | Schrader JA, Gardner SJ, Graves WR (2005). Resistance to water stress of Alnus maritima: intraspecific variation and comparisons to other alders. Environmental and Experimental Botany, 53, 281-298. |
[15] |
Schrader JA, Graves WR (2000). Seed germination and seedling growth of Alnus maritima from its three disjunct populations. Journal of the American Society for Horticultural Science, 125, 128-134.
DOI URL |
[16] | Schrader JA, Graves WR (2003). Phenology and depth of cold acclimation in the three subspecies of Alnus maritima. Journal of the American Society for Horticultural Science, 128, 330-336. |
[17] |
Schrader JA, Graves WR, Rice SA, Gibson JP (2006). Difference in shade tolerance help explain varying success of two sympatric Alnus species. International Journal of Plant Sciences, 167, 979-989.
DOI URL |
[18] |
Schultz HR (2003). Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis winifera L. cultivars during drought. Plant, Cell and Environment, 26, 1393-1405.
DOI URL |
[19] | Shopmeyer CS (1974). Seeds of Woody Plants in the United States: Agriculture Handbook No. 450 1st edn. USDA Forest Service, Washington DC. 256-282. |
[20] | Si JH (司建华), Chang ZQ (常宗强), Su YH (苏永红), Xi HY (席海洋), Feng Q (冯起) (2008). Stomatal conductance characteristics of Populus euphratica leaves and response to environmental factors in the extreme arid region. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 125-130. (in Chinese with English abstract) |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[3] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[4] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
[5] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[6] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[7] | 王景旭, 黄华国, 林起楠, 王冰, 黄侃. 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测[J]. 植物生态学报, 2019, 43(11): 959-968. |
[8] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[9] | 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893. |
[10] | 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6): 631-642. |
[11] | 张秋芳, 吕春平, 贝昭贤, 谢锦升, 吕茂奎, 林伟盛, 陈岳民, 杨玉盛. 野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响[J]. 植物生态学报, 2016, 40(12): 1230-1237. |
[12] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[13] | 孙茜, 贺超, 贺学礼, 赵丽莉. 沙冬青与伴生植物深色有隔内生真菌定殖规律及其与土壤因子的相关性[J]. 植物生态学报, 2015, 39(9): 878-889. |
[14] | 尹本丰, 张元明. 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响[J]. 植物生态学报, 2015, 39(5): 517-529. |
[15] | 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1): 81-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19