植物生态学报 ›› 2021, Vol. 45 ›› Issue (4): 404-419.DOI: 10.17521/cjpe.2021.0013
所属专题: 光合作用
武洪敏1,2, 双升普1,2, 张金燕1,2, 寸竹1,2, 孟珍贵1,2, 李龙根1,2, 沙本才1, 陈军文1,2,*()
收稿日期:
2021-01-12
接受日期:
2021-03-14
出版日期:
2021-04-20
发布日期:
2021-04-14
通讯作者:
* 陈军文cjw31412@163.com
作者简介:
ORCID: *武洪敏: 0000-0003-3927-6154
基金资助:
WU Hong-Min1,2, SHUANG Sheng-Pu1,2, ZHANG Jin-Yan1,2, CUN Zhu1,2, MENG Zhen-Gui1,2, LI Long-Gen1,2, SHA Ben-Cai1, CHEN Jun-Wen1,2,*()
Received:
2021-01-12
Accepted:
2021-03-14
Online:
2021-04-20
Published:
2021-04-14
Contact:
CHEN Jun-Wen
Supported by:
摘要:
阴生植物突然暴露在强光下造成光损伤的情况时有发生, 但其对高光敏感的潜在机制尚不十分清楚。为阐明阴生植物无法在自然全光照环境下生存的相关机制, 该研究以典型阴生植物三七(Panax notoginseng)为材料, 将遮阴环境下(10%透光率)生长的植株转移到全日光环境下3天, 研究其相对叶绿素含量(SPAD值)、光合参数以及叶绿素荧光参数的变化。结果表明, 全光环境下三七光合日变化呈现“双峰”曲线特征, 且净光合速率在处理期间逐日降低。全日光下三七叶片SPAD值、水分利用率和光能利用率显著降低; 叶片光系统I (PSI)反应中心P700最大荧光信号、光系统II (PSII)电子传递速率、暗适应下PSII最大量子效率和光下PSII最大量子效率显著低于遮阴环境下的植株, 且至傍晚不能完全恢复。而参与调节性能量耗散的量子产量、PSI受体侧限制引起的非光化学量子产量、环式电子流则显著高于遮阴环境下的三七。此外, 生长环境光照强度骤增导致荧光诱导动力学曲线发生明显变化, 并显著升高了PSII供体侧和受体侧的荧光产量。当阴生植物三七突然暴露于全光环境下时, 强烈的光照会导致PSII供体侧的放氧复合体活性受损, 抑制受体侧的电子传递, 过度还原PSI的受体侧进而引发PSI光抑制。该研究结果揭示, 全日光导致的PSII不可逆损伤和PSI光抑制可能是典型阴生植物三七为什么不能在全日照光环境下存活的重要原因。
武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制. 植物生态学报, 2021, 45(4): 404-419. DOI: 10.17521/cjpe.2021.0013
WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity. Chinese Journal of Plant Ecology, 2021, 45(4): 404-419. DOI: 10.17521/cjpe.2021.0013
图2 湿度(A)、大气温度(B)和大气CO2浓度(C)在遮阴和全日光下的日变化特征。
Fig. 2 Diurnal pattern of humidity (A), air temperature (B) and atmospheric CO2 concentration (C) in shade treatment and full sunlight treatment.
图3 遮阴和全日光下相对叶绿素含量(SPAD值)的日变化(平均值±标准误,n = 7)。*, 同一测量时间的两处理间差异显著(p< 0.05)。
Fig. 3 Diurnal pattern of relative chlorophyll content (SPAD value) in shade treatment and full sunlight treatment (mean ± SE, n = 7). *, significant difference between the two treatments at same measurement time ( p< 0.05).
图4 遮阴和全日光下净光合速率(A)、胞间CO2浓度(B)和气孔导度(C)的日变化特征(平均值±标准误,n = 7)。*, 同一测量时间的两处理间气体交换参数差异显著(p< 0.05)。
Fig. 4 Diurnal pattern of net photosynthetic rate (A), intercellular CO2 concentration (B) and stomatal conductance (C) in shade treatment and full sunlight treatment (mean ± SE, n = 7). *, significant difference in gas exchange parameters between the two treatments at same measurement time ( p< 0.05).
图5 遮阴和全日光下三七的水分利用率(A)和光能利用率(B)日均值(平均值±标准误,n = 7)。不同小写字母表示处理间差异显著(p< 0.05)。
Fig. 5 Water use efficiency (A) and light use efficiency (B) of Panax notoginseng exposed to shade and full sunlight conditions on the first, second and third day of the experiment, respectively (mean ± SE, n = 7). Different lowercase letters between shade and full sunlight conditions indicate significant difference (p< 0.05).
图6 遮阴与全日光下三七的光适应下最大量子效率(A)、暗适应下最大量子效率(B)和PSII的非光化学猝灭系数(C)的日变化曲线(平均值±标准误,n = 7)。*, 同一测量时间的两处理间叶绿素荧光参数差异显著(p< 0.05)。
Fig. 6 Diurnal pattern of maximum quantum efficiency under light adaptation (A), maximum quantum efficiency under dark adaptation (B) and non-photochemical quenching of PSII (C) in shade treatment and full sunlight treatment (mean ± SE, n = 7). *, significant difference between the two treatments at same measurement time ( p< 0.05).
图7 遮阴与全日光下三七的暗适应下的最大量子效率(A)、PSII反应中心的潜在活性(B)和P700反应中心的最大荧光信号(C) (平均值±标准误,n = 7)。*, 同一测量日的两处理间PSII和PSI活性差异显著(p< 0.05)。
Fig. 7 The maximum quantum efficiency under dark adaptation (A), potential activity of PSII reaction center (B) and the maximum fluorescence signal of the P700 reaction center (C) of Panax notoginseng exposed to shade and full sunlight conditions on the first, second and third day of the experiment, respectively (mean ± SE, n = 7). *, significant difference between the two treatments at same measurement day ( p< 0.05).
图8 遮阴转入全日光后叶片快速荧光诱导动力学曲线WO-J和ΔWO-J的变化(时间坐标为线性形式)。W,K点(100 μs)处的特征位点。day 0、Sunlight-day 1、Sunlight-day 2和Sunlight-day 3分别表示转入全日光前和转入全日光后1、2、3天。不同字母表示差异显著( p< 0.05)。
Fig. 8 Changes in rapid fluorescence induction kinetic curves (WO-J and Δ WO-J) in leaves of Panax notoginseng transferred from a shade environment with 10% transmittance to full sunlight. The abscissa is plotted on a linear time scale. W,the characteristic point at 100 μs (K point). Day 0, Sunlight-day 1, Sunlight-day 2, Sunlight-day 3 represent the exposure to low light, and the transfer to full sunlight for one, two and three days. Different lowercase letters indicate significant differences ( p< 0.05).
图9 10%透光率下生长的三七转入全日光后OJIP曲线相关参数的变化(平均值±标准误,n = 7)。不同字母表示不同处理间差异显著(p< 0.05)。
Fig. 9 Daily pattern of parameters related to the rapid fluorescence induction kinetic curve in leaves of Panax notoginsengtransferred from a shade environment with 10% transmittance to full sunlight (mean ± SE, n = 7). Different letters indicate significant difference between shade and full sunlight conditions (p< 0.05).
图10 遮阴与全日光叶片对电子传递和光系统能量分配的影响(平均值±标准误,n = 7)。LL, 低光强(230 μmol·m -2·s-1, 13:00), HL, 高光强(2 300 μmol·m -2·s-1, 13:00)。Y(I), PSI光化学量子产量; Y(ND), PSI供体侧限制引起的热耗散量子产量; Y(NA), PSI受体侧限制引起的非光化学量子产量; Y(II), PSII光化学量子产量;Y(NPQ), PSII参与热耗散的量子产量; Y(NO), PSII参与调节性能量耗散的量子产量。ETR(I), 通过PSI的电子传递速率;ETR(II), 通过PSII的电子传递速率; CEF,PSI周围的环式电子流。*, 同一测量日的两处理间差异显著(p< 0.05)。
Fig. 10 Effect of shade and full sunlight treatment on electron transfer and photosystem energy partitioning (mean ± SE, n = 7). LL, 10% transmittance-grown Panax notoginseng (230 μmol·m -2·s-1, 13:00); HL, full sunlight-grown Panax notoginseng (2 300 μmol·m -2·s-1, 13:00). Y(I), effective quantum yield of PSI; Y(ND), heat dissipation efficiency at the donors quantum yield of PSI; Y(NA), quantum yield of PSI non-photochemical energy dissipation due to acceptor; Y(II), effective quantum yield of PSII; Y(NPQ), quantum yield of energy dissipation in PSII; Y(NO), fraction of energy passively dissipated in forms of heat and fluorescence. ETR(I), electron transport rate of PSI; ETR(II), electron transport rate of PSII;CEF, cyclic electron flow around PSI. *, significant difference between the two treatments at same measurement day ( p< 0.05).
图11 遮阴与全日光下叶片电子传递比值的变化(平均值±标准误,n = 7)。ETR(I), 通过PSI的电子传递速率;ETR(II), 通过PSII的电子传递速率; CEF,PSI周围的环式电子流。*, 表示两处理间差异显著(p< 0.05)。
Fig. 11 Changes in electron transfer ratio in leaves of Panax notoginseng exposed to shade and full sunlight conditions on the first, second and third day of the experiment, respectively (mean ± SE, n = 7). ETR(I), electron transport rate of PSI; ETR(II), electron transport rate of PSII;CEF, cyclic electron flow around PSI. *, significant difference between the two treatments ( p< 0.05).
[1] |
Allakhverdiev SI, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N (2005). Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant Physiology, 137, 263-273.
PMID |
[2] |
Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M (2016). Symbiotic association between Salix purpurea L. and Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiology, 36, 407-420.
DOI PMID |
[3] |
Bai KD, Liao DB, Jiang DB, Cao KF (2008). Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments. Trees, 22, 449-462.
DOI URL |
[4] | Barth C, Krause GH, Winter K (2001). Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant, Cell & Environment, 24, 163-176. |
[5] |
Chen JW, Kuang SB, Long GQ, Meng ZG, Li LG, Chen ZJ, Zhang GH, Yang SC (2014). Steady-state and dynamic photosynthetic performance and nitrogen partitioning in the shade-demanding plant Panax notoginseng under different levels of growth irradiance. c Acta Physiologiae Plantarum, 36, 2409-2420.
DOI URL |
[6] |
Chen JW, Kuang SB, Long GQ, Yang SC, Meng ZG, Li LG, Chen ZJ, Zhang GH (2016). Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Functional Plant Biology, 43, 479-491.
DOI URL |
[7] | Dong LH, Han QH, Yang Y, Yuan M ( 2015). Photosynthetic characteristics of Chlorophytum capense var. medio- pictum under short duration high light intensity . Acta Prataculturae Sinica, 24, 245-252. |
[ 董立花, 韩巧红, 杨勇, 袁明 ( 2015). 短时强光处理对金心吊兰光合特性的影响. 草业学报, 24, 245-252.] | |
[8] | Gong XY, Rao XQ, Zhou LX, Wang XL, Zhu XL, Cai XA ( 2018). Dynamics of shade tolerance, biomass, and individual growth of five understory plant species in Eucalyptus urophylla plantations . Acta Ecologica Sinica, 38, 1124-1133. |
[ 公绪云, 饶兴权, 周丽霞, 王晓玲, 朱小林, 蔡锡安 ( 2018). 尾叶桉林下5种植物的耐阴性、生物量及其个体消长. 生态学报, 38, 1124-1133.] | |
[9] | Guo LW, Shen YG ( 1996). Protective mechanisms of higher plants avoid photodamage in photosynthetic apparatus. Plant Physiology Communications, 32, 1-8. |
[ 郭连旺, 沈允钢 ( 1996). 高等植物光合机构避免强光破坏的保护机制. 植物生理学报通讯, 32, 1-8.] | |
[10] |
Hallik L, Niinemets Ü, Kull O (2012). Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant Biology, 14, 88-99.
DOI PMID |
[11] |
Hu WH, Zhang SS, Xiao YA, Yan XH ( 2015). Physiological responses and photo-protective mechanisms of two Rhododendron plants to natural sunlight after long term shading . Chinese Journal of Plant Ecology, 39, 1093-1100.
DOI URL |
[ 胡文海, 张斯斯, 肖宜安, 闫小红 ( 2015). 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制. 植物生态学报, 39, 1093-1100.] | |
[12] | Huang W ( 2012). The Significant Role of Cyclic Electron Flow in Plants Adaptation to Environmental Stresses . PhD dissertation, University of Science and Technology of China, Hefei. |
[ 黄伟 ( 2012). 环式电子传递在植物抗环境胁迫过程中的重要作用. 博士学位论文, 中国科学技术大学, 合肥.] | |
[13] |
Huang W, Tikkanen M, Zhang SB (2018a). Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma. Photosynthesis Research, 137, 129-140.
DOI URL |
[14] |
Huang W, Yang YJ, Hu H, Zhang SB (2015a). Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves. Frontiers in Plant Science, 6, 923. DOI: 10.3389/ fpls.2015.00923.
DOI |
[15] |
Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB (2017). Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. Photosynthesis Research, 132, 293-303.
DOI PMID |
[16] |
Huang W, Yang YJ, Zhang SB (2019). Photoinhibition of photosystem I under fluctuating light is linked to the insufficient ΔpH upon a sudden transition from low to high light. Environmental and Experimental Botany, 160, 112-119.
DOI |
[17] |
Huang W, Yang YJ, Zhang SB, Liu T (2018b). Cyclic electron flow around photosystem I promotes ATP synthesis possibly helping the rapid repair of photodamaged photosystem II at low light. Frontiers in Plant Science, 9, 239. DOI: 10.3389/fpls.2018.00239.
DOI URL |
[18] |
Huang W, Zhang SB, Cao KF ( 2012). Physiological role of cyclic electron flow in higher plants. Plant Science Journal, 30, 100-106.
DOI URL |
[ 黄伟, 张石宝, 曹坤芳 ( 2012). 高等植物环式电子传递的生理作用. 植物科学学报, 30, 100-106.] | |
[19] |
Huang W, Zhang SB, Liu T (2018c). Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant Panax notoginseng. Frontiers in Plant Science, 9, 637. DOI: 10.3389/fpls.2018.00637.
DOI URL |
[20] |
Huang W, Zhang SB, Zhang JL, Hu H (2015b). Photoinhibition of photosystem I under high light in the shade-established tropical tree species Psychotria rubra. Frontiers in Plant Science, 6, 801. DOI: 10.3389/fpls.2015.00801.
DOI |
[21] |
Kim JH, Kim SJ, Cho SH, Chow WS, Lee CH (2005). Photosystem I acceptor side limitation is a prerequisite for the reversible decrease in the maximum extent of P700 oxidation after short-term chilling in the light in four plant species with different chilling sensitivities. Physiologia Plantarum, 123, 100-107.
DOI URL |
[22] |
Kitajima K (1994). Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419-428.
DOI PMID |
[23] |
Krause GH, Grube E, Koroleva OY, Barth C, Winter K (2004). Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation? Functional Plant Biology, 31, 743. DOI: 10.1071/FP03239.
DOI URL |
[24] |
Li G, Gao HY, Zhao B, Dong ST, Zhang JW, Yang JS, Wang JF, Liu P ( 2009). Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agronomica Sinica, 35, 1916-1922.
DOI URL |
[ 李耕, 高辉远, 赵斌, 董树亭, 张吉旺, 杨吉顺, 王敬锋, 刘鹏 ( 2009). 灌浆期干旱胁迫对玉米叶片光系统活性的影响. 作物学报, 35, 1916-1922.] | |
[25] | Li PM, Gao HY, Strasser R ( 2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiologica Sinica, 31, 559-566. |
[ 李鹏民, 高辉远, Strasser R ( 2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.] | |
[26] | Li XX, Liu BX, Guo ZT, Chang YX, He L, Chen F, Lu BS ( 2013). Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensisleaves . Chinese Journal of Applied Ecology, 24, 2479-2484. |
[ 李旭新, 刘炳响, 郭智涛, 常越霞, 贺磊, 陈芳, 路丙社 ( 2013). NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化. 应用生态学报, 24, 2479-2484.] | |
[27] |
Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L ( 2014). Mechanisms of photoinhibition induced by high light in Hosta grown outdoors . Chinese Journal of Plant Ecology, 38, 720-728.
DOI |
[ 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷 ( 2014). 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 38, 720-728.] | |
[28] | Liang Y, Li YT, Che XK, Li YN, Luo J, Zhang KH, Zhang ZS, Zhao SJ ( 2018). Effect of PSI photoinhibition on photosynthetic electron transport chain in wheat ( Triticum aestivum) leaves. Plant Physiology Journal, 54, 1426-1432. |
[ 梁英, 李玉婷, 车兴凯, 李月楠, 罗蛟, 张珂豪, 张子山, 赵世杰 ( 2018). 小麦叶片PSI光抑制对光合电子传递链的影响. 植物生理学报, 54, 1426-1432.] | |
[29] |
Liu SL, Ma MD, Pan YZ, Wei LL, He CX, Yang KM ( 2012). Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 36, 1062-1074.
DOI URL |
[ 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂 ( 2012). 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响. 植物生态学报, 36, 1062-1074.] | |
[30] |
Lu CM, Zhang JH (2000). Heat-induced multiple effects on PSII in wheat plants. Journal of Plant Physiology, 156, 259-265.
DOI URL |
[31] | Lu T ( 2016). The Response Mechanisms of Photoinhibiton and Photoprotection Intomato (Solaunm Lycopersicum L.) Leaves to Sub-high Temperature and High Light Intensity Stress. PhD dissertation, Shenyang Agricultural University , Shenyang. |
[ 路涛 ( 2016). 亚高温强光胁迫下番茄幼苗光抑制及光保护机制研究. 博士学位论文, 沈阳农业大学, 沈阳.] | |
[32] |
Ma ZY, Behling S, Ford ED (2014). The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species. Tree Physiology, 34, 730-743.
DOI URL |
[33] |
Maxwell K, Johnson GN (2000). Chlorophyll florescence—A practical guide. Journal of Experimental Botany, 51, 659-668.
PMID |
[34] |
Miyake C, Miyata M, Shinzaki Y, Tomizawa KI (2005). CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—Relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence. Plant and Cell Physiology, 46, 629-637.
DOI URL |
[35] | Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1767, 414-421. |
[36] |
Oliveira MG, Oliosi G, Partelli FL, Ramalho JC (2018). Physiological responses of photosynthesis in black pepper plants under different shade levels promoted by intercropping with rubber trees. Ciência e Agrotecnologia, 42, 513-526.
DOI URL |
[37] | Pan RC, Wang XJ, Li NH ( 2004). Plant Physiology. Higher Education Press, Beijing. |
[ 潘瑞炽, 王小菁, 李娘辉 ( 2004). 植物生理学. 高等教育出版社, 北京.] | |
[38] |
Parker WC, Mohammed GH (2000). Photosynthetic acclimation of shade-grown red pine (Pinus resinosaAit.) seedlings to a high light environment. New Forests, 19, 1-11.
DOI URL |
[39] |
Rascher U, Nedbal L (2006). Dynamics of photosynthesis in fluctuating light. Current Opinion in Plant Biology, 9, 671-678.
PMID |
[40] |
Sae-Tang P, Hihara Y, Yumoto I, Orikasa Y, Okuyama H, Nishiyama Y (2016). Overexpressed superoxide dismutase and catalase act synergistically to protect the repair of PSII during photoinhibition in Synechococcus elongatus PCC 7942. Plant and Cell Physiology, 57, 1899-1907.
DOI PMID |
[41] |
Shimizu M, Ishida A, Hogetsu T (2005). Root hydraulic conductivity and whole-plant water balance in tropical saplings following a shade-to-sun transfer. Oecologia, 143, 189-197.
DOI URL |
[42] | Srivastava A, Guissé B, Greppin H, Strasser RJ (1997). Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1320, 95-106. |
[43] | Strasser RJ, Srivastava A, Tsimilli-Michael M (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples//Yunus M, Pathre U, Mohanty P. Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis Press,London. 445-480. |
[44] | Strasser RJ, Tsimilli-Michael M, Srivastava A (2004). Analysis of the Chlorophyll a Fluorescence Transient. Chlorophyll a Fluorescence. Springer,Netherlands. 321-362. |
[45] | Sun GC, Zhao P, Zeng XP ( 2004). Photosynthetic acclimation to growth-irradiance in two tree species of Magnoliaceae. Acta Ecologica Sinica, 24, 1111-1117. |
[ 孙谷畴, 赵平, 曾小平 ( 2004). 两种木兰科植物叶片光合作用的光驯化. 生态学报, 24, 1111-1117.] | |
[46] |
Valladares F, Pearcy RW (1998). The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia, 114, 1-10.
DOI PMID |
[47] |
van Heerden PDR, Strasser RJ, Krüger GHJ (2004). Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiologia Plantarum, 121, 239-249.
DOI URL |
[48] |
Way DA, Pearcy RW (2012). Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology, 32, 1066-1081.
DOI URL |
[49] |
Xie HT, Yu MK, Cheng XR ( 2017). Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants. Chinese Journal of Plant Ecology, 41, 559-569.
DOI URL |
[ 颉洪涛, 虞木奎, 成向荣 ( 2017). 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响. 植物生态学报, 41, 559-569.] | |
[50] | Xu DQ, Zhang YZ, Zhang RX ( 1992). Photoinhibition of photosynthesis in plants. Plant Physiology Communications, 28, 237-243. |
[ 许大全, 张玉忠, 张荣铣 ( 1992). 植物光合作用的光抑制. 植物生理学通讯, 28, 237-243.] | |
[51] | Xu DQ (2013). Photosynthesis. Science Press, Beijing. |
[ 许大全 (2013). 光合作用学. 科学出版社, 北京, | |
[52] | Xu XZ, Zhang JY, Zhang GH, Long GQ, Yang SC, Chen ZJ, Wei FG, Chen JW ( 2018). Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng . Chinese Journal of Applied Ecology, 29, 193-204. |
[ 徐祥增, 张金燕, 张广辉, 龙光强, 杨生超, 陈中坚, 魏富刚, 陈军文 ( 2018). 光强对三七光合能力及能量分配的影响. 应用生态学报, 29, 193-204.] | |
[53] | Yamaguchi N, Makino A, Mae T (2001). Responses of Rubisco activity in vivoto light intensity and CO2 in rice leaves. Science Access, 3(1), 1-4. |
[54] |
Yamamoto H, Shikanai T (2019). PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiology, 179, 588-600.
DOI PMID |
[55] |
Yamori W (2016). Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, 129, 379-395.
DOI URL |
[56] | Yamori W, Kusumi K, Iba K, Terashima I (2020). Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant, Cell & Environment, 43, 1230-1240. |
[57] |
Yamori W, Makino A, Shikanai T (2016). A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific Reports, 6, 20147. DOI: 10.1038/srep20147.
DOI URL |
[58] | Yang H, Han WD, Gao XM ( 2019). Diurnal photosynthetic characteristics of Uvaria grandiflora Roxb. and its correlation with environmental factors . Ecological Science, 38, 92-97. |
[ 杨浩, 韩维栋, 高秀梅 ( 2019). 山椒子光合特性日变化与其环境因子的相关性分析. 生态科学, 38, 92-97.] | |
[59] |
Yang YJ, Ding XX, Huang W (2019a). Stimulation of cyclic electron flow around photosystem I upon a sudden transition from low to high light in two angiosperms Arabidopsis thaliana and Bletilla striata. Plant Science, 287, 110166. DOI: 10.1016/j.plantsci.2019.110166.
DOI URL |
[60] |
Yang YJ, Zhang SB, Wang JH, Huang W (2019b). Photosynthetic regulation under fluctuating light in field-grownCerasus cerasoides: a comparison of young and mature leaves. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1860, 148073. DOI: 10.1016/j.bbabio.2019.148073.
DOI |
[61] | Yu HX ( 2017). The Effects on the Growth of Hosta Cultivar under Shading and Interactive Effects of Nitrogen and Light Condition and Comprehensive Evaluation about Hosta Cultivar . Master degree dissertation, Shenyang Agricultural University,Shenyang. |
[ 于瀚翔 ( 2017). 遮阴与光氮互作对玉簪品种生长影响及引种玉簪品种综合评价. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[62] |
Zhang Q, Zhang TJ, Chow WS, Xie X, Chen YJ, Peng CL (2015). Photosynthetic characteristics and light energy conversions under different light environments in five tree species occupying dominant status at different stages of subtropical forest succession. Functional Plant Biology, 42, 609-619.
DOI URL |
[63] |
Zhang SP, Scheller HV (2004). Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant and Cell Physiology, 45, 1595-1602.
DOI URL |
[64] | Zheng F, Li ZJ, Qiu ZJ, Zhao HB, Zhou GY ( 2020). Effects of understory light on functional traits of evergreen broad- leaved forest saplings in Nanling Mountains, Guangdong Province. Acta Ecologica Sinica, 40, 4516-4527. |
[ 郑芬, 李兆佳, 邱治军, 赵厚本, 周光益 ( 2020). 广东南岭天然常绿阔叶林林下光环境对林下幼树功能性状的影响. 生态学报, 40, 4516-4527.] | |
[65] |
Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015). Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynthesis Research, 126, 449-463.
DOI PMID |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 张金燕, 寸竹, 双升普, 洪杰, 孟珍贵, 陈军文. 阴生植物三七稳态和动态光合特性对氮水平的响应[J]. 植物生态学报, 2023, 47(3): 331-347. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[8] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[9] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[10] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[11] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[12] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[13] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[14] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[15] | 韩吉梅, 张旺锋, 熊栋梁, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展[J]. 植物生态学报, 2017, 41(8): 914-924. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 4024
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1905
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La