植物生态学报 ›› 2021, Vol. 45 ›› Issue (4): 420-428.DOI: 10.17521/cjpe.2020.0326

• 研究论文 • 上一篇    

植物气孔导度对CO2响应模型的构建

叶子飘1, 于冯2,3, 安婷1, 王复标1, 康华靖2,3,4,*   

  1. 1井冈山大学数理学院, 江西吉安 343009
    2温州市农业科学研究院, 浙江温州 325006
    3温州市农林渔生态系统增汇减排重点实验室, 浙江温州 325006
    4浙江省浙南作物育种重点实验室, 浙江温州 325006
  • 收稿日期:2020-10-09 接受日期:2021-01-16 出版日期:2021-04-20 发布日期:2021-03-09
  • 通讯作者: ORCID: *康华靖: 0000-0003-3808-3115(kanghuajing@126.com)
  • 作者简介:* kanghuajing@126.com
  • 基金资助:
    国家自然科学基金(31960054);国家自然科学基金(31560069)

Investigation on CO2-response model of stomatal conductance for plants

YE Zi-Piao1, YU Feng2,3, AN Ting1, WANG Fu-Biao1, KANG Hua-Jing2,3,4,*   

  1. 1College of Math and Physics, Jinggangshan University, Ji’an, Jiangxi 343009, China
    2Wenzhou Academy of Agricultural Sciences, Wenzhou, Zhejiang 325006, China
    3Wenzhou Key Laboratory of Adding Carbon Sinks and Reducing Carbon Emissions of Agriculture, Forestry and Fishery Ecosystem, Wenzhou, Zhejiang 325006, China
    4Southern Zhejiang Key Laboratory of Crop Breeding of Zhejiang Provence, Wenzhou, Zhejiang 325006, China
  • Received:2020-10-09 Accepted:2021-01-16 Online:2021-04-20 Published:2021-03-09
  • Contact: KANG Hua-Jing
  • Supported by:
    National Natural Science Foundation of China(31960054);National Natural Science Foundation of China(31560069)

摘要:

构建一个普适性的植物叶片气孔导度(gs)对CO2浓度响应(gs-Ca)的模型, 对定量研究植物叶片gs对CO2浓度的响应变化尤为必要。该研究运用便携式光合仪(LI-6400)测量了大豆(Glycine max)和小麦(Triticum aestivum)光合作用对CO2的响应曲线(An-Ca), 在比较传统的Michaelis-Menten模型(M-M模型)和叶子飘构建的CO2响应模型拟合大豆和小麦An-Ca效果的基础上, 构建了gs-Ca响应新模型。然后用新构建的模型拟合大豆和小麦的gs-Ca曲线, 并将拟合结果与传统模型的拟合结果, 以及与其对应的观测数据进行比较, 以判断所构建模型是否合理。结果显示: 叶子飘构建的An-Ca模型可较好地拟合大豆和小麦的An-Ca曲线, 确定系数(R2)均高达0.999。M-M模型拟合大豆和小麦的An-Ca曲线时的R2虽然也较高, 但在较高CO2浓度时的拟合曲线偏离观测曲线。因此, 基于叶子飘的An-Ca模型构建gs-Ca模型更为可行。新构建的gs-Ca模型可较好地拟合大豆和小麦的gs-Ca曲线, R2分别为0.995和0.994, 而且还可以直接给出最大气孔导度(gs-max)、最小气孔导度(gs-min), 以及与gs-min相对应的CO2浓度值(Cs-min)。拟合得到大豆和小麦的gs-max分别为0.686和0.481 mol·m-2·s-1, 与其对应的观测值(分别为0.666和0.471 mol·m-2·s-1)之间均不存在显著差异; 同样, 拟合得到的大豆和小麦的gs-min分别为0.271和0.297 mol·m-2·s-1, 与其对应的观测值(分别为0.279和0.293 mol·m-2·s-1)之间也均不存在显著差异; 此外, 新构建的gs-Ca模型给出大豆和小麦的Cs-min值分别为741.45和1 112.43 μmol·mol -1, 与其对应的观测值(732.78和1 200.34 μmol·mol -1)也不存在显著差异。由此可见, 该研究新构建的gs-Ca模型可作为定量研究植物叶片气孔导度对CO2浓度变化的有效数学工具。

关键词: 气孔导度, CO2响应模型, CO2浓度, 光合作用

Abstract:

Aims To quantify the responses of stomatal conductance (gs) to CO2 concentration (gs-Ca) under current and future climate conditions, it is necessary to build a generally applicable model suitable for simulating this process at plant leaf levels.

Methods The response curves (An-Ca) of photosynthesis of soybean (Glycine max) and wheat (Triticum aestivum) to CO2 were fitted using data collected from a portable photosynthetic apparatus (LI-6400). Based on the comparison between the traditional Michaelis-Menten model (M-M model) and the CO2 response model developed by Ye, a new gs-Ca response model was proposed. Then, the measured gs-Ca curves of soybean and wheat were fitted with the new model. The model results were compared with those of the traditional model and the corresponding observation data to judge the rationality of the model.

Important findings The An-Ca model developed by Ye could fit well the An-Ca curve of soybean and wheat, and the coefficient of determination (R2) is as high as 0.999. Although the R 2 values of M-M model fitting the An-Ca curves of soybean and wheat were also high, the fitting curves deviated from the observation at higher CO2 concentrations. Meanwhile, M-M model greatly overestimated the maximum photosynthetic rate and could not estimate the saturation CO2 concentrations. Therefore, it was more feasible to developgs-Ca model based on the An-Ca model of Ye. The new model of gs-Ca could fit well the gs-Ca curves of soybean and wheat, and the R 2 were 0.995 and 0.994, respectively. Moreover, the maximum stomatal conductance (gs-max), the minimum stomatal conductance (gs-min) and the CO2 concentration corresponding to gs-min (Cs-min) could also be generated directly. gs-max of soybean and wheat fitted by the gs-Ca model was 0.686 and 0.481 mol·m-2·s-1, respectively, and there was no significant difference between the fitted values and corresponding observation values (0.666 and 0.471 mol·m-2·s-1, respectively). The new model of gs-Ca could also obtain the minimum gs (gs-min) of soybean and wheat (0.271 and 0.297 mol·m-2·s-1, respectively), and there was also no significant difference between the fitted values and corresponding observation values (0.279 and 0.293 mol·m-2·s-1, respectively). In addition, the new model of gs-Ca generated the Cs-min values of 741.45 and 1 112.43 μmol·mol -1for soybean and wheat, respectively, and also showed no significant difference from the observed value (732.78 and 1 200.34 μmol·mol-1, respectively). Consequently, the gs-Ca model developed in this paper can be used as an effective mathematical tool to quantitatively study the effect of stomatal conductance on CO2 concentration.

Key words: stomatal conductance, CO2 response model, CO2 concentration, photosynthesis