植物生态学报 ›› 2021, Vol. 45 ›› Issue (9): 961-971.DOI: 10.17521/cjpe.2021.0240
林夏珍1, 刘林2, 董婷婷2, 方琦博2, 郭庆学2,*()
收稿日期:
2021-06-28
接受日期:
2021-08-11
出版日期:
2021-09-20
发布日期:
2021-11-18
通讯作者:
郭庆学
作者简介:
*(guoqxeco@163.com)
LIN Xia-Zhen1, LIU Lin2, DONG Ting-Ting2, FANG Qi-Bo2, GUO Qing-Xue2,*()
Received:
2021-06-28
Accepted:
2021-08-11
Online:
2021-09-20
Published:
2021-11-18
Contact:
GUO Qing-Xue
摘要:
土壤盐渍化是阻碍林业发展的重要原因, 杨树(Populus spp.)是中国主要的人工林树种, 探究盐胁迫下植物的碳氮代谢特征与抗盐胁迫能力, 将有助于杨树人工林的可持续发展。该研究利用美洲黑杨(P. deltoides)和青杨(P. cathayana)两个物种, 采用去叶与不去叶处理, 在盐胁迫下研究两种杨树的抗逆性差异。研究发现, 盐胁迫下美洲黑杨的总生物量和光合能力均显著高于青杨。盐胁迫与去叶处理导致美洲黑杨叶绿素浓度和光系统II最大光量子效率显著高于青杨, 表明去叶对美洲黑杨影响较小, 但是加重了盐对青杨的毒害作用。美洲黑杨茎叶Na+浓度显著低于青杨, 表明美洲黑杨能够有效地限制Na+向地上部分运输。在盐胁迫条件下, 美洲黑杨茎和根比青杨能够维持更高浓度的淀粉、可溶性糖以及蔗糖, 前者较高的腺苷二磷酸葡萄糖焦磷酸化酶活性促进了光合产物向淀粉转换, 保证植物有充足的非结构性碳水化合物来参与渗透调节和维持其他生命活动, 而去叶使得青杨非结构性碳水化合物严重不足, 受盐胁迫影响更严重。盐胁迫下, 青杨分布在脂溶性蛋白(膜系统相关蛋白质)的氮浓度显著下降, 而NH4+、谷氨酸脱氢酶活性与脯氨酸浓度显著升高。研究结果证明, 非结构性碳水化合物的积累、转化和分配是植物抗逆性的重要特征。
林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响. 植物生态学报, 2021, 45(9): 961-971. DOI: 10.17521/cjpe.2021.0240
LIN Xia-Zhen, LIU Lin, DONG Ting-Ting, FANG Qi-Bo, GUO Qing-Xue. Effects of non-structural carbohydrate and nitrogen allocation on the ability of Populus deltoides and P. cathayana to resist soil salinity stress. Chinese Journal of Plant Ecology, 2021, 45(9): 961-971. DOI: 10.17521/cjpe.2021.0240
图1 不同处理下美洲黑杨和青杨茎生物量(A)、根生物量(B)、总生物量(C)和叶片特征(D)(平均值±标准误)。CK, 对照; D, 去叶; Sa, 盐胁迫; Sa-D, 盐胁迫与去叶; Sp, 物种。不同小写字母代表差异显著(p < 0.05)。**, 0.001 < p ≤0.01; ***, p ≤ 0.001。
Fig. 1 Stem biomass (A), root biomass (B), total biomass (C) and leaf performance (D) of Populus deltoides and P. cathayana under different treatments (mean ± SE). CK, control; D, defoliation; Sa, salt stress; Sa-D, salt stress and defoliation; Sp, species. Different lowercase letters indicate significant differences among treatments (p < 0.05). **, 0.001 < p ≤0.01; ***, p ≤ 0.001.
图2 不同处理下美洲黑杨和青杨叶、茎和根中Na+与Cl-浓度(平均值±标准误)。由于青杨盐胁迫与去叶组根系生物量不足, 所以未测定根系Cl-浓度。CK, 对照; D, 去叶; Sa, 盐胁迫; Sa-D, 盐胁迫与去叶; Sp, 物种。不同小写字母代表差异显著(p < 0.05)。*, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001。
Fig. 2 Na+ and Cl- concentrations of leaf, stem and root in both Populus deltoides and P. cathayana under different treatments (mean ± SE). Root Cl- concentration was not tested because the root biomass of P. cathayana in the salt stress and defoliation treatment was not sufficient. CK, control; D, defoliation; Sa, salt stress; Sa-D, salt stress and defoliation; Sp, species. Different lowercase letters indicate significant differences among treatments (p < 0.05). *, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001.
图3 不同处理下美洲黑杨和青杨叶片光合与荧光特征(平均值±标准误)。Fv/Fm, 最大光量子效率; gs, 气孔导度; Pn, 净光合速率; YII, 实际光量子效率。CK, 对照; D, 去叶; Sa, 盐胁迫; Sa-D, 盐胁迫与去叶; Sp, 物种。不同小写字母代表差异显著(p < 0.05)。*, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001。
Fig. 3 The leaf photosynthetic and chlorophyll fluorescence traits of Populus deltoides and P. cathayana under different treatments (mean ± SE). Fv/Fm, maximum yield of primary photochemistry; gs, stomatal conductance; Pn, net photosynthetic rate; YII, effective quantum yield of PSII. CK, control; D, defoliation; Sa, salt stress; Sa-D, salt stress and defoliation; Sp, species. Different lowercase letters indicate significant differences among treatments (p < 0.05). *, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001.
图4 不同处理下美洲黑杨和青杨叶、茎和根淀粉浓度(平均值±标准误)。CK, 对照; D, 去叶; Sa, 盐胁迫; Sa-D, 盐胁迫与去叶。不同小写字母代表差异显著(p < 0.05)。*, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001。
Fig. 4 Leaf, stem and root starch concentration of Populus deltoides and P. cathayana under different treatments (mean ± SE). CK, control; D, defoliation; Sa, salt stress; Sa-D, salt stress and defoliation; Sp, species. Different lowercase letters indicate significant differences among treatments (p < 0.05). *, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001.
处理 Treatment | 可溶性糖 Soluble sugars (mg·g-1) | 蔗糖 Sucrose (mg·g-1) | ||||
---|---|---|---|---|---|---|
叶 Leaf | 茎 Stem | 根 Root | 叶 Leaf | 茎 Stem | 根 Root | |
美洲黑杨 P. deltoides | ||||||
对照 Control (CK) | 134.1 ± 4.4a | 71.2 ± 2.2a | 51.6 ± 1.3b | 75.6 ± 3.9a | 27.6 ± 1.9ab | 27.6 ± 1.4b |
去叶 Defoliation (D) | 143.1 ± 4.6a | 58.4 ± 1.9bc | 33.0 ± 1.3e | 73.8 ± 4.3a | 26.5 ± 2.6abc | 19.3 ± 1.4c |
盐胁迫 Salt stress (Sa) | 144.9 ± 6.0a | 67.2 ± 3.0ab | 60.3 ± 1.8a | 79.4 ± 5.8a | 35.0 ± 4.4a | 37.7 ± 3.2a |
盐胁迫与去叶 Salt stress and Defoliation (Sa-D) | 149.0 ± 2.3a | 54.1 ± 1.6c | 45.1 ± 1.1bc | 75.4 ± 3.9a | 25.3 ± 3.2abc | 22.0 ± 1.4bc |
青杨 P. cathayana | ||||||
CK | 144.6 ± 3.4a | 59.7 ± 1.8bc | 39.4 ± 1.5cd | 61.0 ± 2.4ab | 27.0 ± 3.3abc | 19.4 ± 0.6c |
D | 141.6 ± 1.1a | 44.4 ± 1.9d | 38.7 ± 2.0cd | 47.2 ± 2.8b | 17.8 ± 2.0bc | 21.2 ± 1.8bc |
Sa | 113.6 ± 5.5b | 34.6 ± 1.4e | 29.9 ± 3.4e | 49.0 ± 8.1b | 15.2 ± 1.6bc | 14.5 ± 1.2cd |
Sa-D | 113.0 ± 4.2b | 31.0 ± 1.1e | 18.5 ± 1.2f | 44.5 ± 3.4b | 14.6 ± 1.2c | 11.0 ± 1.4d |
p | ||||||
物种 Species (Sp) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
D | 0.432 | <0.001 | <0.001 | 0.076 | 0.012 | <0.001 |
Sa | 0.001 | <0.001 | 0.094 | 0.483 | 0.264 | 0.636 |
Sp × D | 0.168 | 0.216 | <0.001 | 0.352 | 0.894 | <0.001 |
Sp × Sa | <0.001 | <0.001 | <0.001 | 0.138 | 0.010 | <0.001 |
D × Sa | 0.833 | 0.044 | 0.174 | 0.598 | 1.000 | 0.012 |
Sp × D × Sa | 0.549 | 0.035 | 0.010 | 0.388 | 0.034 | 0.676 |
表1 不同处理条件下美洲黑杨与青杨叶、茎和根中可溶性糖与蔗糖浓度(平均值±标准误)
Table 1 Soluble sugars and sucrose concentration of leaf, stem and root in both Populus deltoides and P. cathayana under different treatments (mean ± SE)
处理 Treatment | 可溶性糖 Soluble sugars (mg·g-1) | 蔗糖 Sucrose (mg·g-1) | ||||
---|---|---|---|---|---|---|
叶 Leaf | 茎 Stem | 根 Root | 叶 Leaf | 茎 Stem | 根 Root | |
美洲黑杨 P. deltoides | ||||||
对照 Control (CK) | 134.1 ± 4.4a | 71.2 ± 2.2a | 51.6 ± 1.3b | 75.6 ± 3.9a | 27.6 ± 1.9ab | 27.6 ± 1.4b |
去叶 Defoliation (D) | 143.1 ± 4.6a | 58.4 ± 1.9bc | 33.0 ± 1.3e | 73.8 ± 4.3a | 26.5 ± 2.6abc | 19.3 ± 1.4c |
盐胁迫 Salt stress (Sa) | 144.9 ± 6.0a | 67.2 ± 3.0ab | 60.3 ± 1.8a | 79.4 ± 5.8a | 35.0 ± 4.4a | 37.7 ± 3.2a |
盐胁迫与去叶 Salt stress and Defoliation (Sa-D) | 149.0 ± 2.3a | 54.1 ± 1.6c | 45.1 ± 1.1bc | 75.4 ± 3.9a | 25.3 ± 3.2abc | 22.0 ± 1.4bc |
青杨 P. cathayana | ||||||
CK | 144.6 ± 3.4a | 59.7 ± 1.8bc | 39.4 ± 1.5cd | 61.0 ± 2.4ab | 27.0 ± 3.3abc | 19.4 ± 0.6c |
D | 141.6 ± 1.1a | 44.4 ± 1.9d | 38.7 ± 2.0cd | 47.2 ± 2.8b | 17.8 ± 2.0bc | 21.2 ± 1.8bc |
Sa | 113.6 ± 5.5b | 34.6 ± 1.4e | 29.9 ± 3.4e | 49.0 ± 8.1b | 15.2 ± 1.6bc | 14.5 ± 1.2cd |
Sa-D | 113.0 ± 4.2b | 31.0 ± 1.1e | 18.5 ± 1.2f | 44.5 ± 3.4b | 14.6 ± 1.2c | 11.0 ± 1.4d |
p | ||||||
物种 Species (Sp) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
D | 0.432 | <0.001 | <0.001 | 0.076 | 0.012 | <0.001 |
Sa | 0.001 | <0.001 | 0.094 | 0.483 | 0.264 | 0.636 |
Sp × D | 0.168 | 0.216 | <0.001 | 0.352 | 0.894 | <0.001 |
Sp × Sa | <0.001 | <0.001 | <0.001 | 0.138 | 0.010 | <0.001 |
D × Sa | 0.833 | 0.044 | 0.174 | 0.598 | 1.000 | 0.012 |
Sp × D × Sa | 0.549 | 0.035 | 0.010 | 0.388 | 0.034 | 0.676 |
图5 不同处理下美洲黑杨和青杨叶、根中腺苷二磷酸葡萄糖(ADPG)焦磷酸化酶活性(平均值±标准误)。CK, 对照; D, 去叶; Sa, 盐胁迫; Sa-D, 盐胁迫与去叶; Sp, 物种。不同小写字母代表差异显著(p < 0.05)。*, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001。
Fig. 5 Adenosine diphosphate glucose (ADPG) pyrophosphorylase activity in the leaf and root of Populus deltoides and P. cathayana under different treatments (mean ± SE). CK, control; D, defoliation; Sa, salt stress; Sa-D, salt stress and defoliation; Sp, species. Different lowercase letters indicate significant differences among treatments (p < 0.05). *, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001.
图6 不同处理下美洲黑杨与青杨叶氮稳定同位素比值(δ15N)(平均值±标准误)。CK, 对照; D, 去叶; Sa, 盐胁迫; Sa-D, 盐胁迫与去叶; Sp, 物种。不同小写字母代表差异显著(p < 0.05)。*, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001。
Fig. 6 Nitrogen stable isotope ratio (δ15N) in leaves of Populus deltoides and P. cathayana under different treatments (mean ± SE). CK, control; D, defoliation; Sa, salt stress; Sa-D, salt stress and defoliation; Sp, species. Different lowercase letters indicate significant differences among treatments (p < 0.05). *, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001.
图7 不同处理下美洲黑杨和青杨叶与根中NH4+、NO3-和脯氨酸浓度(平均值±标准误)。CK, 对照; D, 去叶; Sa, 盐胁迫; Sa-D, 盐胁迫与去叶; Sp, 物种。不同小写字母代表差异显著(p < 0.05)。*, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001。
Fig. 7 NH4+, NO3- and proline concentrations in the leaf and root of Populus deltoides and P. cathayana under different treatments (mean ± SE). CK, control; D, defoliation; Sa, salt stress; Sa-D, salt stress and defoliation; Sp, species. Different lowercase letters indicate significant differences among treatments (p < 0.05). *, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001.
处理 Treatment | 谷氨酸脱氢酶 GDH (U) | 谷氨酰胺合成酶 GS (U) | ||
---|---|---|---|---|
叶 Leaf | 根 Root | 叶 Leaf | 根 Root | |
美洲黑杨 P. deltoides | ||||
对照 Control (CK) | 202.1 ± 25.3cd | 63.7 ± 7.7b | 7.5 ± 1.7a | 5.3 ± 0.5 |
去叶 Defoliation (D) | 111.6 ± 26.2de | 82.6 ± 4.9b | 9.5 ± 1.6a | 4.6 ± 0.4 |
盐胁迫 Salt stress (Sa) | 411.9 ± 40.6b | 129.3 ± 9.3a | 11.3 ± 1.8a | 4.6 ± 0.4 |
盐胁迫与去叶 Salt stress and Defoliation (Sa-D) | 685.1 ± 22.6a | 49.2 ± 9.4b | 13.7 ± 1.5a | 3.8 ± 0.2 |
青杨 P. cathayana | ||||
CK | 114.6 ± 15.2de | 73.5 ± 7.1b | 7.2 ± 0.9a | 3.5 ± 0.3 |
D | 58.3 ± 12.6e | 85.7 ± 9.1b | 7.9 ± 0.9a | 3.7 ± 0.9 |
Sa | 248.8 ± 36.7c | 78.4 ± 11.4b | 4.1 ± 0.5a | 3.5 ± 0.2 |
Sa-D | 248.1 ± 28.1c | 78.2 ± 11.2b | 5.8 ± 0.9a | 3.8 ± 0.2 |
p | ||||
物种 Spices (Sp) | <0.001 | 0.726 | <0.001 | 0.004 |
D | 0.114 | 0.063 | 0.078 | 0.491 |
Sa | <0.001 | 0.253 | 0.454 | 0.242 |
Sp × D | 0.004 | 0.007 | 0.582 | 0.136 |
Sp × Sa | <0.001 | 0.181 | 0.001 | 0.216 |
D × Sa | <0.001 | <0.001 | 0.736 | 0.920 |
Sp × D × Sa | <0.001 | 0.002 | 0.880 | 0.888 |
表2 不同处理条件下美洲黑杨与青杨叶和根谷氨酸脱氢酶与谷氨酰胺合成酶活性(平均值±标准误)
Table 2 Glutamate dehydrogenase (GDH) and glutamine synthase (GS) activity of leaf and root in both Populus deltoides and P. cathayana under different treatments (mean ± SE)
处理 Treatment | 谷氨酸脱氢酶 GDH (U) | 谷氨酰胺合成酶 GS (U) | ||
---|---|---|---|---|
叶 Leaf | 根 Root | 叶 Leaf | 根 Root | |
美洲黑杨 P. deltoides | ||||
对照 Control (CK) | 202.1 ± 25.3cd | 63.7 ± 7.7b | 7.5 ± 1.7a | 5.3 ± 0.5 |
去叶 Defoliation (D) | 111.6 ± 26.2de | 82.6 ± 4.9b | 9.5 ± 1.6a | 4.6 ± 0.4 |
盐胁迫 Salt stress (Sa) | 411.9 ± 40.6b | 129.3 ± 9.3a | 11.3 ± 1.8a | 4.6 ± 0.4 |
盐胁迫与去叶 Salt stress and Defoliation (Sa-D) | 685.1 ± 22.6a | 49.2 ± 9.4b | 13.7 ± 1.5a | 3.8 ± 0.2 |
青杨 P. cathayana | ||||
CK | 114.6 ± 15.2de | 73.5 ± 7.1b | 7.2 ± 0.9a | 3.5 ± 0.3 |
D | 58.3 ± 12.6e | 85.7 ± 9.1b | 7.9 ± 0.9a | 3.7 ± 0.9 |
Sa | 248.8 ± 36.7c | 78.4 ± 11.4b | 4.1 ± 0.5a | 3.5 ± 0.2 |
Sa-D | 248.1 ± 28.1c | 78.2 ± 11.2b | 5.8 ± 0.9a | 3.8 ± 0.2 |
p | ||||
物种 Spices (Sp) | <0.001 | 0.726 | <0.001 | 0.004 |
D | 0.114 | 0.063 | 0.078 | 0.491 |
Sa | <0.001 | 0.253 | 0.454 | 0.242 |
Sp × D | 0.004 | 0.007 | 0.582 | 0.136 |
Sp × Sa | <0.001 | 0.181 | 0.001 | 0.216 |
D × Sa | <0.001 | <0.001 | 0.736 | 0.920 |
Sp × D × Sa | <0.001 | 0.002 | 0.880 | 0.888 |
[1] |
Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 6, 868. DOI: 10.3389/fpls.2015.00868.
DOI |
[2] | Bai AX, Lu XY (2020). Effects of calcium and calcium effectors on antioxidant system and osmotic adjustment substances content of sour jujube (Ziziphus jujuba var. spinosa) seedlings under NaCl stress. Plant Physiology Journal, 56, 1910-1920. |
[ 白爱兴, 鲁晓燕 (2020). 钙和钙效应剂对NaCl胁迫下酸枣幼苗抗氧化系统及渗透调节物质含量的影响. 植物生理学报, 56, 1910-1920.] | |
[3] |
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang LX (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068. DOI: 10.3389/fpls.2019.01068.
DOI URL |
[4] |
Behdad A, Mohsenzadeh S, Azizi M (2021). Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere, 17, 100319. DOI: 10.1016/j.rhisph.2021.100319.
DOI URL |
[5] |
Cao X, Jia JB, Li H, Li MC, Liang ZS, Liu TX, Liu WG, Peng CH, Luo ZB (2012). Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biology, 14, 612-620.
DOI PMID |
[6] | Chen J, Dong TF, Duan BL, Korpelainen H, Niinemets Ü, Li CY (2015). Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana. Plant, Cell & Environment, 38, 1285-1298. |
[7] | Chen SL, Li JK, Bi WF, Wang SS (2001). Genotypic variation in accumulation of salt ions betaine and sugars in poplar under conditions of salt stress. Chinese Bulletin of Botany, 18, 587-596. |
[ 陈少良, 李金克, 毕望富, 王沙生 (2001). 盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化. 植物学通报, 18, 587-596.] | |
[8] | Evans JR, Seemann JR (1989). The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences and control. Plant Biology, 183-205. |
[9] |
Faseela P, Sinisha AK, Brestič M, Puthur JT (2019). Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica, 58, 293-3005.
DOI URL |
[10] |
Ferrero DML, Piattoni CV, Asencion Diez MD, Rojas BE, Hartman MD, Ballicora MA, Iglesias AA (2020). Phosphorylation of ADP-glucose pyrophosphorylase during wheat seeds development. Frontiers in Plant Science, 11, 1058. DOI: 10.3389/fpls.2020.01058.
DOI PMID |
[11] |
Guo QQ, Turnbull MH, Song JC, Roche J, Novak O, Späth J, Jameson PE, Love J (2017). Depletion of carbohydrate reserves limits nitrate uptake during early regrowth in Lolium perenne L. Journal of Experimental Botany, 68, 1569-1583.
DOI URL |
[12] |
Guo QX, Wu XY, Korpelainen H, Li CY (2020). Stronger intra- specific competition aggravates negative effects of drought on the growth of Cunninghamia lanceolata. Environmental and Experimental Botany, 175, 104042. DOI: 10.1016/j.envexpbot.2020.104042.
DOI URL |
[13] | Han LX, Ouyang DJ, Zhang GX (2020). Growth Na+ and K+ distribution and osmotic regulation of Chionanthus retusus seedlings under NaCl stress. Acta Botanica Boreali- Occidentalia Sinica, 40, 502-509. |
[ 韩丽霞, 欧阳敦君, 张鸽香 (2020). NaCl胁迫对流苏幼苗生长、钠钾离子分布及渗透调节物质的影响. 西北植物学报, 40, 502-509.] | |
[14] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees-From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[15] |
Hüve K, Bichele I, Ivanova H, Keerberg O, Parnik T, Rasulov B, Tobias M, Niinemets Ü (2012). Temperature responses of dark respiration in relation to leaf sugar concentration. Physiologia Plantarum, 144, 320-334.
DOI URL |
[16] | Lin SJ, Sun M (2017). Analysis of physiological response and salt tolerance mechanism of Crossostephium chinense and four species of Chrysanthemum under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 37, 1137-1144. |
[ 林双冀, 孙明 (2017). 盐胁迫下芙蓉菊与4种菊属植物生理响应特征及其耐盐机理分析. 西北植物学报, 37, 1137-1144.] | |
[17] |
Liu M, Korpelainen H, Li CY (2021a). Sexual differences and sex ratios of dioecious plants under stressful environments. Journal of Plant Ecology, 14, 920-933.
DOI URL |
[18] |
Liu M, Liu XC, Du XH, Korpelainen H, Niinemets Ü, Li CY (2021b). Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources. Tree Physiology, 41, 1462-1478.
DOI URL |
[19] |
Luo J, Zhou J, Li H, Shi WG, Polle A, Lu MZ, Sun XM, Luo ZB (2015). Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology, 35, 1283-1302.
DOI URL |
[20] |
Macneill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ (2017). Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. Journal of Experimental Botany, 68, 4433-4453.
DOI URL |
[21] |
Meuriot F, Morvan-Bertrand A, Noiraud-Romy N, Decau ML, Escobar-Gutiérrez AJ, Gastal F, Prud'homme MP (2018). Short-term effects of defoliation intensity on sugar remobilization and N fluxes in ryegrass. Journal of Experimental Botany, 69, 3975-3986.
DOI URL |
[22] |
Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
DOI PMID |
[23] |
Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi J, Jiang XN, Polle A (2005). Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiology, 139, 1762-1772.
PMID |
[24] |
Sathee L, Jha SK, Rajput OS, Singh D, Kumar S, Kumar A (2021). Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiology and Biochemistry, 165, 161-172.
DOI URL |
[25] | Secchi F, Zwieniecki MA (2011). Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant, Cell & Environment, 34, 514-524. |
[26] |
Signori-Müller C, Oliveira RS, Barros FdV, Tavares JV, Gilpin M, Diniz FC, Zevallos MJM, Yupayccana CAS, Acosta M, Bacca J, Cruz Chino RS, Aramayo Cuellar GM, Cumapa ERM, Martinez F, Pérez Mullisaca FM, et al. (2021). Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communication, 12, 2310. DOI: 10.1038/s41467-021-22378-8.
DOI URL |
[27] | Takashima T, Hikosaka K, Hirose T (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment, 27, 1047-1054. |
[28] |
Wang ZQ, Yuan YZ, Ou JQ, Lin QH, Zhang CF (2007). Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Journal of Plant Physiology, 164, 695-701.
DOI URL |
[29] | Wen XM, Xian T, Liu JY, Xu X, Dong TF (2021). Effects of defoliation on growth and non-structural carbohydrates in female and male Populus cathayana. Chinese Journal of Ecology, 40, 41-48. |
[ 文小梅, 鲜婷, 刘俊雁, 胥晓, 董廷发 (2021). 去叶对青杨雌雄植株生长和非结构性碳水化合物的影响. 生态学杂志, 40, 41-48.] | |
[30] |
Wu XY, Liu JT, Meng QQ, Fang SY, Kang JY, Guo QX (2021). Differences in carbon and nitrogen metabolism between male and female Populus cathayana in response to deficient nitrogen. Tree Physiology, 41, 119-133.
DOI URL |
[31] |
Xu XH, Diao HJ, Qin CY, Hao J, Shen Y, Dong KH, Wang CH (2021). Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 45, 85-95.
DOI URL |
[ 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧 (2021). 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应. 植物生态学报, 45, 85-95.] | |
[32] | Zhao R, Chen SL (2020). The salt-stress signaling network involved in the regulation of ionic and ROS homeostasis in poplar. Scientia Sinica (Vitae), 50, 167-175. |
赵瑞, 陈少良 (2020). 杨树耐盐性调控的离子平衡与活性氧平衡信号网络. 中国科学: 生命科学, 50, 167-175.] | |
[33] |
Zhou HH, Li WH (2015). Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica. Chinese Journal of Plant Ecology, 39, 81-91.
DOI URL |
[ 周洪华, 李卫红 (2015). 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 39, 81-91.]
DOI |
[1] | 姚萌 康荣华 王盎 马方园 李靳 台子晗 方运霆. 利用15N示踪技术研究乔木幼苗对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 李变变 张凤华 赵亚光 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢以及生物量的影响[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[4] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[5] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[6] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[7] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[8] | 宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响[J]. 植物生态学报, 2020, 44(6): 669-676. |
[9] | 章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静. 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态[J]. 植物生态学报, 2019, 43(6): 521-531. |
[10] | 周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 2019, 43(4): 296-304. |
[11] | 王兆国, 王传宽. 碳供给与碳利用对树木生长的限制机制[J]. 植物生态学报, 2019, 43(12): 1036-1047. |
[12] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[13] | 顾伟平, 刘瑞鹏, 李兴欢, 孙涛, 张子嘉, 昝鹏, 温璐宁, 马鹏宇, 毛子军. 四个典型温带树种不同根序细根分解速率及其主要影响因素[J]. 植物生态学报, 2018, 42(9): 955-962. |
[14] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[15] | 蒙振思, 向卫, 苏国岿, 李大东, 董廷发, 彭进友, 李晓东, 龚小平, 梁宁, 胥晓. 河北小五台山青杨种群中雌雄群体的空间分布及其成因[J]. 植物生态学报, 2018, 42(12): 1145-1153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19