植物生态学报 ›› 2024, Vol. 48 ›› Issue (3): 377-389.DOI: 10.17521/cjpe.2023.0172 cstr: 32100.14.cjpe.2023.0172
杨安娜1, 李曾燕1, 牟凌1, 杨柏钰1, 赛碧乐1, 张立1, 张增可1, 王万胜2, 杜运才2, 由文辉1, 阎恩荣1,*()
收稿日期:
2023-06-14
接受日期:
2023-10-09
出版日期:
2024-03-20
发布日期:
2024-04-24
通讯作者:
阎恩荣
基金资助:
YANG An-Na1, LI Zeng-Yan1, MOU Ling1, YANG Bai-Yu1, SAI Bi-Le1, ZHANG Li1, ZHANG Zeng-Ke1, WANG Wan-Sheng2, DU Yun-Cai2, YOU Wen-Hui1, YAN En-Rong1,*()
Received:
2023-06-14
Accepted:
2023-10-09
Online:
2024-03-20
Published:
2024-04-24
Contact:
YAN En-Rong
Supported by:
摘要:
揭示次生演替过程中土壤细菌群落对植被类型变化的响应格局, 有助于深化对生态系统地上地下相互作用机制的理解。该研究以上海大金山岛处于演替前、中和后期的落叶灌丛、落叶阔叶林和常绿阔叶林为对象, 通过测定土壤碳、氮、磷含量以及土壤细菌群落特征, 分析土壤细菌多样性、类群关系网络结构和标志性类群如何随植被演替而更替。结果发现: 土壤养分含量在常绿阔叶林显著高于落叶阔叶林, 但土壤细菌多样性在落叶阔叶林显著高于常绿阔叶林, 土壤养分含量和细菌多样性在落叶灌丛处于中等水平。土壤细菌的相关性网络节点、密度和复杂性在落叶阔叶林最高, 在落叶灌丛中等, 在常绿阔叶林最低。落叶灌丛和落叶阔叶林的优势土壤细菌分别为根瘤菌目(Rhizobiales)和伯克氏菌目(Burkholderiales)等具有潜在固氮功能的类群, 常绿阔叶林的优势土壤细菌为黄单胞菌目(Xanthomonadales)和嗜热芽菌目(Thermogemmatisporales)等具有潜在致病和抗病性功能的类群以及酸杆菌目(Acidobacteriales)等与纤维素降解相关的类群。该结果表明: 海岛植被演替过程中, 植物种类组成和土壤养分供给性的改变会极大地重塑土壤细菌多样性、群落组成、互作网络结构和标志类群。海岛常绿阔叶林显著更低的土壤细菌多样性、趋于松散简化的细菌网络结构以及具有潜在致病和抗病功能的标志类群的出现, 说明了顶极群落地下部分对地上部分退化趋势的响应。
杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异. 植物生态学报, 2024, 48(3): 377-389. DOI: 10.17521/cjpe.2023.0172
YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai. Chinese Journal of Plant Ecology, 2024, 48(3): 377-389. DOI: 10.17521/cjpe.2023.0172
植被类型 Vegetation type | 总氮含量 Total nitrogen content (g·kg-1) | 总磷含量 Total phosphorus content (g·kg-1) | 有机碳含量 Organic matter content (g·kg-1) | 速效氮含量 Available nitrogen content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | 速效钾含量 Available kalium content (mg·kg-1) |
---|---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | 0.61 ± 0.10ab | 0.11 ± 0.01b | 5.99 ± 1.37ab | 453.70 ± 154.30ab | 4.03 ± 1.00ab | 232.17 ± 29.60a |
落叶阔叶林 Deciduous broadleaf forest | 0.49 ± 0.09b | 0.09 ± 0.01b | 4.94 ± 1.09b | 323.80 ± 69.20b | 4.12 ± 1.50a | 234.00 ± 75.30a |
常绿阔叶林 Evergreen broadleaf forest | 0.66 ± 0.14a | 0.17 ± 0.04a | 7.86 ± 1.97a | 480.31 ± 132.08a | 14.10 ± 5.80a | 199.41 ± 45.20a |
表2 大金山岛不同植被类型的土壤化学性质(平均值±标准差)
Table 2 Soil chemical properties across vegetation types in Dajinshan Island, Shanghai (mean ± SD)
植被类型 Vegetation type | 总氮含量 Total nitrogen content (g·kg-1) | 总磷含量 Total phosphorus content (g·kg-1) | 有机碳含量 Organic matter content (g·kg-1) | 速效氮含量 Available nitrogen content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | 速效钾含量 Available kalium content (mg·kg-1) |
---|---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | 0.61 ± 0.10ab | 0.11 ± 0.01b | 5.99 ± 1.37ab | 453.70 ± 154.30ab | 4.03 ± 1.00ab | 232.17 ± 29.60a |
落叶阔叶林 Deciduous broadleaf forest | 0.49 ± 0.09b | 0.09 ± 0.01b | 4.94 ± 1.09b | 323.80 ± 69.20b | 4.12 ± 1.50a | 234.00 ± 75.30a |
常绿阔叶林 Evergreen broadleaf forest | 0.66 ± 0.14a | 0.17 ± 0.04a | 7.86 ± 1.97a | 480.31 ± 132.08a | 14.10 ± 5.80a | 199.41 ± 45.20a |
图1 大金山岛3种植被类型土壤细菌的可操作分类单元(OTU)丰富度(A)、Chao1指数(B)、Shannon-Wiener指数(C)和Simpson指数(D)的差异。DF, 落叶阔叶林; DS, 落叶灌丛; EF, 常绿阔叶林。箱体间不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Differences in operational taxonomic units (OTU) richness (A), Chao1 (B), Shannon-Wiener (C) and Simpson (D) indices of soil bacterial community across three vegetation types in Dajinshan Island, Shanghai. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest. Different lowercase letters among boxplots indicate significant differences (p < 0.05).
图2 大金山岛3种植被类型土壤细菌群落结构的差异。AK, 速效钾含量; AN, 速效氮含量; AP, 速效磷含量; TC, 有机碳含量; TN, 总氮含量; TP, 总磷含量。DF, 落叶阔叶林; DS, 落叶灌丛; EF, 常绿阔叶林。NMDS, 非度量多维尺度。
Fig. 2 Difference in soil bacterial community structure among three vegetation types in Dajinshan Island, Shanghai. AK, available kalium content; AN, available nitrogen content; AP, available phosphorus content; TC, organic matter content; TN, total nitrogen content; TP, total phosphorus content. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest. NMDS, non-metric multidimensional scaling.
图3 大金山岛3种植被类型土壤细菌类群相关性网络。任意两点连线说明可操作分类单元(OTU)之间相关性显著(p < 0.05), 红色代表显著正相关, 蓝色代表显著负相关。DF, 落叶阔叶林; DS, 落叶灌丛; EF, 常绿阔叶林。d, 网络直径; D, 密度; l, 路径长度; n, 节点数。
Fig. 3 Correlation networks of soil bacteria across three vegetation types in Dajinshan Island, Shanghai. The connection between any two points indicates that the correlation between operational taxonomic units (OTUs) is significant (p < 0.05). Red represents positive correlation, while blue represents negative correlation. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest. d, network diameter; D, density; l, path length; n, number of nodes.
植被类型 Vegetation type | OTU编号 OTU code | 门 Phylum | 纲 Class | 目 Order | 节点度 Nodes degree |
---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | OTU137 | 拟杆菌门 Bacteroidetes | 腐螺旋菌纲 Saprospirae | 腐螺旋菌目 Saprospirales | 19 |
OTU34 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
OTU52 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
落叶阔叶林 Deciduous broadleaf forest | OTU98 | 变形菌门 Proteobacteria | γ变形菌纲 Gamma proteobacteria | 黄单胞菌 Xanthomonadales | 54 |
常绿阔叶林 Evergreen broadleaf forest | OTU104 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 6 |
OTU47 | WPS-2 | - | - | 6 |
表3 大金山岛3种植被类型土壤细菌的相关性网络核心节点
Table 3 Core nodes in correlation networks of soil bacterial across three vegetation types in Dajinshan Island, Shanghai
植被类型 Vegetation type | OTU编号 OTU code | 门 Phylum | 纲 Class | 目 Order | 节点度 Nodes degree |
---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | OTU137 | 拟杆菌门 Bacteroidetes | 腐螺旋菌纲 Saprospirae | 腐螺旋菌目 Saprospirales | 19 |
OTU34 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
OTU52 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
落叶阔叶林 Deciduous broadleaf forest | OTU98 | 变形菌门 Proteobacteria | γ变形菌纲 Gamma proteobacteria | 黄单胞菌 Xanthomonadales | 54 |
常绿阔叶林 Evergreen broadleaf forest | OTU104 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 6 |
OTU47 | WPS-2 | - | - | 6 |
图4 大金山岛3种植被类型土壤优势细菌门的相对丰度。DF, 落叶阔叶林; DS, 落叶灌丛; EF, 常绿阔叶林。
Fig. 4 Relative abundance distribution of dominant soil bacterial phyla across three vegetation types in Dajinshan Island, Shanghai. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest.
门 Phylum | 落叶灌丛-落叶阔叶林 Deciduous shrubland - deciduous broadleaf forest | 落叶阔叶林-常绿阔叶林 Deciduous broadleaf forest - evergreen broadleaf forest | 落叶灌丛-常绿阔叶林 Deciduous shrubland - evergreen broadleaf forest | |||
---|---|---|---|---|---|---|
t | p | t | p | t | p | |
变形菌门 Proteobacteria | -0.65 | 0.79 | 0.63 | 0.81 | -0.09 | 0.99 |
酸杆菌门 Acidobacteria | -0.50 | 0.87 | -0.81 | 0.70 | -1.15 | 0.49 |
放线菌门 Actinobacteria | 2.71 | 0.03 | -1.01 | 0.58 | 1.73 | 0.21 |
WPS-2 | -0.89 | 0.65 | -5.04 | 0.00 | -5.06 | 0.00 |
绿弯菌门 Chloroflexi | -0.76 | 0.73 | -1.29 | 0.41 | -1.80 | 0.19 |
浮霉菌门 Planctomycetes | 2.31 | 0.07 | -0.03 | 0.99 | -2.17 | 0.10 |
厚壁菌门 Firmicutes | -1.84 | 0.18 | 1.03 | 0.56 | -0.89 | 0.65 |
AD3 | -1.35 | 0.38 | -0.30 | 0.95 | -1.53 | 0.29 |
疣微菌门 Verrucomicrobia | 3.45 | 0.01 | 0.69 | 0.77 | 3.85 | 0.00 |
表4 大金山岛3种植被类型土壤细菌优势门相对多度差异的显著性检验结果
Table 4 Results of significance test for the difference in relative abundance of dominant soil bacterial phylum among three vegetation types in Dajinshan Island, Shanghai
门 Phylum | 落叶灌丛-落叶阔叶林 Deciduous shrubland - deciduous broadleaf forest | 落叶阔叶林-常绿阔叶林 Deciduous broadleaf forest - evergreen broadleaf forest | 落叶灌丛-常绿阔叶林 Deciduous shrubland - evergreen broadleaf forest | |||
---|---|---|---|---|---|---|
t | p | t | p | t | p | |
变形菌门 Proteobacteria | -0.65 | 0.79 | 0.63 | 0.81 | -0.09 | 0.99 |
酸杆菌门 Acidobacteria | -0.50 | 0.87 | -0.81 | 0.70 | -1.15 | 0.49 |
放线菌门 Actinobacteria | 2.71 | 0.03 | -1.01 | 0.58 | 1.73 | 0.21 |
WPS-2 | -0.89 | 0.65 | -5.04 | 0.00 | -5.06 | 0.00 |
绿弯菌门 Chloroflexi | -0.76 | 0.73 | -1.29 | 0.41 | -1.80 | 0.19 |
浮霉菌门 Planctomycetes | 2.31 | 0.07 | -0.03 | 0.99 | -2.17 | 0.10 |
厚壁菌门 Firmicutes | -1.84 | 0.18 | 1.03 | 0.56 | -0.89 | 0.65 |
AD3 | -1.35 | 0.38 | -0.30 | 0.95 | -1.53 | 0.29 |
疣微菌门 Verrucomicrobia | 3.45 | 0.01 | 0.69 | 0.77 | 3.85 | 0.00 |
图5 大金山岛3种植被类型土壤细菌相对丰度显著性标志类群。由内至外辐射的圆圈代表由门至目的分类级别, 不同分类级别上的每一个小圆圈代表该水平下的一个分类, 无显著差异的物种统一着色为黄色, 差异显著的物种跟随组别着色, 未能在图中显示(以字母表示)的标志物对应的物种名展示在右侧。DF, 落叶阔叶林; DS, 落叶灌丛; EF, 常绿阔叶林。
Fig. 5 The most markable abundant taxa (biomarkers) of soil bacterial among three vegetation types on Dajinshan Island, Shanghai. The circle from inside to outside represents the taxonomy level from phylum to order, and each small circle at a given classification level represents a subordinate class within that category. The species with none of significant difference are colored by yellow, the species with significant difference are accompanied by the group color, and the species that cannot show in circle (represented by letters) and are corresponding to the markers display on the right side of the figure. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest.
目的类别 Oder level | 总氮含量 Total nitrogen content | 总磷含量 Total phosphorus content | 有机碳含量 Organic carbon content | 速效氮含量 Available nitrogen content | 速效磷含量 Available phosphorus content | 速效钾含量 Available kalium content |
---|---|---|---|---|---|---|
肠杆菌目 Enterobacteriales | -0.17 | -0.13 | -0.09 | -0.23 | -0.14 | 0.12 |
酸杆菌目 Acidobacteriales | -0.27 | -0.01 | -0.10 | -0.26 | 0.15 | -0.22 |
伯克氏菌目 Burkholderiales | -0.04 | -0.13 | -0.09 | -0.25 | -0.14 | 0.13 |
黄单胞菌目 Xanthomonadales | 0.24 | 0.45* | 0.33 | 0.24 | 0.39 | -0.27 |
嗜热芽菌目 Thermogemmatisporales | -0.04 | 0.30 | 0.08 | -0.00 | 0.37 | -0.25 |
红螺菌目 Rhodospirillales | 0.15 | 0.48* | 0.26 | 0.27 | 0.60 | -0.39 |
根瘤菌目 Rhizobiales | 0.19 | 0.28 | 0.18 | 0.42* | 0.24 | -0.40 |
土壤红杆菌目 Solirubrobacterales | 0.33 | 0.36 | 0.31 | 0.38 | 0.18 | -0.33 |
Gaiellales | 0.20 | -0.03 | 0.07 | 0.31 | -0.17 | -0.13 |
表5 大金山岛土壤细菌优势标志类群相对丰度与土壤养分含量的相关性
Table 5 Pearson correlation coefficients between relative abundance of main biomarker groups of soil bacterial and soil nutrients contents in Dajinshan Island, Shanghai
目的类别 Oder level | 总氮含量 Total nitrogen content | 总磷含量 Total phosphorus content | 有机碳含量 Organic carbon content | 速效氮含量 Available nitrogen content | 速效磷含量 Available phosphorus content | 速效钾含量 Available kalium content |
---|---|---|---|---|---|---|
肠杆菌目 Enterobacteriales | -0.17 | -0.13 | -0.09 | -0.23 | -0.14 | 0.12 |
酸杆菌目 Acidobacteriales | -0.27 | -0.01 | -0.10 | -0.26 | 0.15 | -0.22 |
伯克氏菌目 Burkholderiales | -0.04 | -0.13 | -0.09 | -0.25 | -0.14 | 0.13 |
黄单胞菌目 Xanthomonadales | 0.24 | 0.45* | 0.33 | 0.24 | 0.39 | -0.27 |
嗜热芽菌目 Thermogemmatisporales | -0.04 | 0.30 | 0.08 | -0.00 | 0.37 | -0.25 |
红螺菌目 Rhodospirillales | 0.15 | 0.48* | 0.26 | 0.27 | 0.60 | -0.39 |
根瘤菌目 Rhizobiales | 0.19 | 0.28 | 0.18 | 0.42* | 0.24 | -0.40 |
土壤红杆菌目 Solirubrobacterales | 0.33 | 0.36 | 0.31 | 0.38 | 0.18 | -0.33 |
Gaiellales | 0.20 | -0.03 | 0.07 | 0.31 | -0.17 | -0.13 |
[1] | Alexander E, Friederike H, Stefan B (2012). Coherent dynamics and association networks among lake bacterioplankton taxa. The ISME Journal, 6, 330-342. |
[2] | Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV (2011). Soil microbial community successional patterns during forest ecosystem restoration. Applied and Environmental Microbiology, 77, 6158-6164. |
[3] |
Cline LC, Zak DR (2015). Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology, 96, 3374-3385.
PMID |
[4] | Enrique GR, Prieto I, Villar R (2018). The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant and Soil, 435, 353-366. |
[5] | Ethel BS, Lucas MC, Chuck SF, Cristina EAM (2019). Distribution, function and regulation of type 6 secretion systems of Xanthomonadales. Frontiers in Microbiology, 10, 1635. DOI: 10.3389/fmicb.2019.01635 |
[6] | Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y, Chu H (2019). Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 7, 143. DOI: 10.1186/s40168-019-0757-8. |
[7] |
Fierer N, Bradford MA, Jackson RB (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
DOI PMID |
[8] | Fruchterman TMJ, Reingold EM (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21, 1129-1164. |
[9] | Garrido-Oter R, Nakano RT, Dombrowski N, Ma K, The AgBiome Team, Mchardy AC, Schulze-Lefert P (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host & Microbe, 24, 155-167. |
[10] | Gobat JM, Aragno M, Matthey W (2004). The Living Soil: Fundamentals of Soil Science and Soil Biology. Science Publishers, Enfield, USA. |
[11] | He GX, Peng TS, Guo Y, Wen SZ, Ji L, Luo Z (2022). Forest succession improves the complexity of soil microbial interaction and ecological stochasticity of community assembly: evidence from Phoebe bournei-dominated forests in subtropical regions. Frontiers in Microbiology, 13, 1021258. DOI: 10.3389/FMICB.2022.1021258. |
[12] | Hu J, Yang H, Long X, Liu Z, Rengel Z (2016). Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area. Scientific Reports, 6, 21938. DOI: 10.1038/srep21938. |
[13] | Jia S, Wang X, Yuan Z, Lin F, Ye J, Lin G, Hao Z, Bagchi R (2020). Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 11, 286. DOI: 10.1038/s41467-019-14140-y. |
[14] |
Jin YL, Li BC, Geng L, Bu Y (2017). Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai. Biodiversity Science, 25, 304-311.
DOI |
[靳亚丽, 李必成, 耿龙, 卜云 (2017). 上海大金山岛不同植被类型下土壤动物群落多样性. 生物多样性, 25, 304-311.]
DOI |
|
[15] |
Li P, Shi RJ, Zhao F, Yu JH, Cui XY, Hu JG, Zhang Y (2019). Soil bacterial community structure and predicted functions in the larch forest during succession at the Greater Khingan Mountains of Northeast China. Chinese Journal of Applied Ecology, 30, 95-107.
DOI |
[李萍, 史荣久, 赵峰, 于景华, 崔晓阳, 胡金贵, 张颖 (2019). 大兴安岭落叶松林不同演替阶段土壤细菌群落结构与功能潜势. 应用生态学报, 30, 95-107.]
DOI |
|
[16] | Lu RK (2000). The Method of Soil Agricultural Chemical Analysis. China Agriculture Science & Technology Press, Beijing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[17] | Luo DH, Li X, Luo BJ, Xu MS, Tuo B, Yan ER, You WH (2020). Soil meso- and micro-fauna characteristics in evergreen broad-leaved forest and deciduous broad-leaved forest in Dajinshan Island, China. Journal of Ecology and Rural Environment, 36, 349-357. |
[罗鼎晖, 李翔, 骆蓓菁, 许洺山, 妥彬, 阎恩荣, 由文辉 (2020). 大金山岛常绿阔叶林和落叶阔叶林中小型土壤动物群落特征. 生态与农村环境学报, 36, 349-357.] | |
[18] |
Marisa RM, King MG (2016). Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. International Journal of Systematic and Evolutionary Microbiology, 66, 5328-5335.
DOI PMID |
[19] |
Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011). Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environmental Microbiology, 13, 1800-1814.
DOI PMID |
[20] | Poupin MJ, Greve M, Carmona V, Pinedo I (2016). A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN. Frontiers in Plant Science, 7, 492. DOI: 10.3389/fpls.2016.00492. |
[21] | Prescott C, Grayston SJ (2013). Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management, 309, 19-27. |
[22] | Qu ZL, Liu B, Ma Y, Xu J, Sun H (2020). The response of the soil bacterial community and function to forest succession caused by forest disease. Functional Ecology, 34, 2548-2559. |
[23] | Ruben GO, Thomas NR, Nina D, Ma KW, Mchardy AC, Paul SL (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host and Microbe, 24, 155-167. |
[24] | Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G (2015). Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology & Biochemistry, 81, 219-227. |
[25] |
Schmidt SK, Nemergut DR, Darcy JL, Lynch R (2014). Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology, 23, 254-258.
DOI PMID |
[26] |
Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296-303.
PMID |
[27] |
Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology, 18, 415-427.
DOI PMID |
[28] | Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied Environmental Microbiology, 75, 2046-2056. |
[29] | Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A (2015). Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Functional Ecology, 29, 1341-1349. |
[30] | Xu MS, Zhu XT, Wang WS, Du YC, Wang YY, Liang QM, Zheng LT, Yan ER (2022). Vegetation classification and mapping of Dajinshan Island: a grid inventory-based approach. Guihaia, 42, 1273-1283. |
[许洺山, 朱晓彤, 王万胜, 杜运才, 汪彦颖, 梁启明, 郑丽婷, 阎恩荣 (2022). 上海大金山岛植被分类与制图——基于网格化清查方法. 广西植物, 42, 1273-1283.] | |
[31] | Yan ER, Wang XH, Chen XY (2007). Impacts of evergreen broad-leaved forest, degradation on soil nutrients and carbon pools in Tiantong, Zhejiang Province. Acta Ecologica Sinica, 27, 1646-1655. |
[阎恩荣‚ 王希华‚ 陈小勇 (2007). 浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响. 生态学报‚ 27, 1646-1655.] | |
[32] | Yan ER, Wang XH, Zhou W (2008a). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 13-22. |
[阎恩荣‚ 王希华‚ 周武 (2008a). 天童常绿阔叶林演替系列植物群落的N:P化学计量特征. 植物生态学报‚ 32, 13-22.] | |
[33] | Yan ER, Wang XH, Zhou W (2008b). Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 1-12. |
[阎恩荣, 王希华, 周武 (2008b). 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报‚ 32, 1-12.] | |
[34] | Yan ER‚ Wang XH‚ Guo M‚ Zhong Q‚ Zhou W, Li YF (2009). Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant and Soil, 320, 181-194. |
[35] | Yan ER‚ Wang XH‚ Huang JJ (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil‚ 289, 187-197. |
[36] | Yang AN, Lu YF, Zhang JH, Wu JS, Xu JL, Tong ZK (2019). Changes in soil nutrients and Acidobacteria community structure in Cunninghamia lanceolata plantations. Scientia Silvae Sinicae, 55(1), 119-127. |
[杨安娜, 陆云峰, 张俊红, 吴家森, 徐金良, 童再康 (2019). 杉木人工林土壤养分及酸杆菌群落结构变化. 林业科学, 55(1), 119-127.] | |
[37] | Yang YC, Da LJ, Qin XK (2002). Study on the flora of Dajinshan Island in Shanghai, China. Journal of Wuhan Botanical Research, 20, 433-437. |
[杨永川, 达良俊, 秦祥堃 (2002). 上海大金山岛种子植物区系的研究. 武汉植物学研究, 20, 433-437.] | |
[38] | Yarwood SA, Högberg MN (2017). Soil bacteria and archaea change rapidly in the first century of Fennoscandian boreal forest development. Soil Biology & Biochemistry, 114, 160-167. |
[39] | Yuan M, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J (2021). Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348. |
[40] | Zheng Y, Saitou A, Wang C, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Frontiers in Microbiology, 10, 893. DOI: 10.3389/fmicb.2019.00893. |
[41] | Zhong ZK, Zhang XY, Wang X, Fu SY, Wu SJ, Lu XQ, Ren CJ, Han XH, Yang GH (2020). Soil bacteria and fungi respond differently to plant diversity and plant family composition during the secondary succession of abandoned farmland on the Loess Plateau, China. Plant and Soil, 448, 183-200. |
[42] | Zhu CL, Han YJ, Xie JZ, Sun HJ, Li ZC (2008). Investigation and analysis on characteristics of forest communities in Dajinshan Island, Shanghai. China Forestry Science and Technology, 22(6), 57-59. |
[朱春玲, 韩玉洁, 谢锦忠, 孙海菁, 李正才 (2008). 上海大金山岛森林群落调查与特征分析. 林业科技开发, 22(6), 57-59.] |
[1] | 冉佳鑫 张宇辉 王云 杨智杰 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 廖苏慧 倪隆康 秦佳双 谭羽 顾大形. 中亚热带喀斯特森林不同演替阶段树种水力调节策略差异[J]. 植物生态学报, 2024, 48(9): 0-0. |
[3] | 张梦迪, 向官海, 文艺瑶, 王欢, 呼格吉勒, 白永飞, 王忠武, 郑淑霞. 灌丛斑块和草本斑块碳交换对季节性降水增加的响应——基于地上净初级生产力和叶面积指数标准化的比较分析[J]. 植物生态学报, 2024, 48(8): 1035-1049. |
[4] | 郑莉莉, 余林兰, 戴萍, 薛跃规, 龙萍. 广西大石围天坑群植物叶片养分特征及其适应性[J]. 植物生态学报, 2024, 48(7): 872-887. |
[5] | 王燕, 张全智, 王传宽, 郭万桂, 蔺佳玮. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943-954. |
[6] | 周建, 王焓. 森林径级结构研究: 从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(6): 675-689. |
[7] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[8] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[9] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[10] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[11] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[12] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[13] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[14] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[15] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19