植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 1035-1049.DOI: 10.17521/cjpe.2023.0359 cstr: 32100.14.cjpe.2023.0359
所属专题: 碳循环
张梦迪1,2,*, 向官海2,3,*, 文艺瑶2,5, 王欢2,6, 呼格吉勒7, 白永飞2,4, 王忠武1,**(), 郑淑霞2,4,**(
)(
)
收稿日期:
2023-12-04
接受日期:
2024-05-10
出版日期:
2024-08-20
发布日期:
2024-05-10
通讯作者:
**王忠武(wangzhongwu@imau.edu.cn);郑淑霞(zsx@ibcas.ac.cn), ORCID:0000-0001-6818-3796
作者简介:
*同等贡献
基金资助:
ZHANG Meng-Di1,2,*, XIANG Guan-Hai2,3,*, WEN Yi-Yao2,5, WANG Huan2,6, Hugejile 7, BAI Yong-Fei2,4, WANG Zhong-Wu1,**(), ZHENG Shu-Xia2,4,**(
)(
)
Received:
2023-12-04
Accepted:
2024-05-10
Online:
2024-08-20
Published:
2024-05-10
Contact:
WANG Zhong-Wu(wangzhongwu@imau.edu.cn), ZHENG Shu-Xia(zsx@ibcas.ac.cn), ORCID:0000-0001-6818-3796
About author:
*Contributed equally to this work
Supported by:
摘要:
随着气候变化和人类活动干扰的加剧, 干旱半干旱地区草地灌丛化现象普遍发生, 严重影响了草地生态系统的碳汇功能。水分是内蒙古半干旱草原的主要限制因子, 未来降水格局的变化对草原生态系统的碳交换具有重要影响。然而, 目前关于降水变化对灌丛化草地生态系统, 特别是异质斑块碳交换过程的影响研究较少, 相关机制尚不清楚。为此, 该研究利用内蒙古小叶锦鸡儿(Caragana microphylla)灌丛化草地季节性降水增加(冬季增雪、夏季增雨)实验平台, 系统观测了灌丛斑块和草本斑块的碳交换参数, 即净生态系统碳交换(NEE)、总生态系统生产力(GEP)、生态系统呼吸(ER), 并结合基于地上净初级生产力(ANPP)和叶面积指数(LAI)标准化的参数比较分析, 研究了季节性降水增加对灌丛化草地碳交换的影响以及异质斑块的响应差异。结果表明: 1)夏季增雨显著提高了草本斑块|NEE|、GEP和ER值, 而冬季增雪显著降低了草本斑块|NEE|ANPP、GEPANPP和ERANPP。夏季增雨显著增加了灌丛斑块GEP和ER值, 但对NEE影响不明显, 冬季增雪对灌丛斑块的碳交换过程有促进作用。总体而言, 灌丛斑块的|NEE|、GEP、ER显著高于草本斑块。相较于湿润年份(2021年), 干旱年份(2020年)的碳交换对降水增加的响应更为敏感。2)灌丛斑块碳交换(|NEE|、GEP和ER)与土壤水分含量、叶片生物量呈正相关关系, 夏季增雨主要通过增加深层土壤(40-80 cm)水分含量、降低土壤温度来促进碳交换。草本斑块碳交换与浅层土壤(0-20 cm)水分含量、ANPP呈正相关关系, 与土壤温度、根冠比呈负相关关系; 夏季增雨主要通过增加浅层土壤水分含量、降低土壤温度促进碳交换, 而冬季增雪则通过增加深层土壤水分含量和减少地下生物量来抑制草本斑块碳交换。3)基于ANPP标准化后的碳交换参数能更好地揭示灌丛斑块和草本斑块对降水变化的响应差异。该研究结果为准确评估气候变化下干旱半干旱草地生态系统的碳汇功能和固碳潜力提供了重要科学依据。
张梦迪, 向官海, 文艺瑶, 王欢, 呼格吉勒, 白永飞, 王忠武, 郑淑霞. 灌丛斑块和草本斑块碳交换对季节性降水增加的响应——基于地上净初级生产力和叶面积指数标准化的比较分析. 植物生态学报, 2024, 48(8): 1035-1049. DOI: 10.17521/cjpe.2023.0359
ZHANG Meng-Di, XIANG Guan-Hai, WEN Yi-Yao, WANG Huan, Hugejile , BAI Yong-Fei, WANG Zhong-Wu, ZHENG Shu-Xia. Response of carbon exchange between shrub and grass patches to increased seasonal precipitation: a comparative analysis based on aboveground net primary productivity and leaf area index standardization. Chinese Journal of Plant Ecology, 2024, 48(8): 1035-1049. DOI: 10.17521/cjpe.2023.0359
图1 内蒙古小叶锦鸡儿灌丛化草地水分和养分添加实验平台。C, 对照; N, 氮添加; P, 磷添加; S, 冬季增雪; W, 夏季增雨。Block 1-5为5个区组重复。样方布设图中空白处为少于2丛灌木的样地, 不适合作为长期实验样方。
Fig. 1 Experimental platform for water and nutrient addition in Caragana microphylla shrub-encroached grassland of Nei Mongol. C, control; N, nitrogen addition; P, phosphorus addition; S, increased winter snowfall; W, increased summer rainfall. Block 1-5 are replicated for five blocks. The empty spaces in the sample plot layout diagram represent plots with fewer than two shrubs, which are not suitable for long-term experimental plots.
![]() |
表1 季节性降水增加与年份(Y)对灌丛斑块和草本斑块碳交换参数的线性混合模型分析
Table 1 Linear mixed model analysis of the effects of increased seasonal precipitation and year (Y) on carbon exchange parameters in shrub and grass patches
![]() |
图2 冬季增雪(S)和夏季增雨(W)对灌丛斑块(Shrub)和草本斑块(Grass)碳交换参数(A)的影响, 以及对基于地上净初级生产力(ANPP) (B)和叶面积指数(LAI) (C)标准化的碳交换参数的影响(平均值±标准误)。Control, 对照; ER, 生态系统呼吸; ERANPP, 基于地上净初级生产力标准化的生态系统呼吸; ERLAI, 基于叶面积指数标准化的生态系统呼吸; GEP, 总生态系统生产力; GEPANPP, 基于地上净初级生产力标准化的总生态系统生产力; GEPLAI, 基于叶面积指数标准化的总生态系统生产力; Grass, 草本斑块; NEE, 净生态系统碳交换; NEEANPP, 基于地上净初级生产力标准化的净生态系统碳交换; NEELAI, 基于叶面积指数标准化的净生态系统碳交换; Shrub, 灌丛斑块; SW, 冬季增雪和夏季增雨。*表示在相应年份处理效应显著; *, p < 0.05; **, p < 0.01; ***, p < 0.001。不同大写字母表示同一年份内灌丛斑块和草本斑块差异显著(p < 0.05)。
Fig. 2 Effects of increased winter snowfall (S) and increased summer rainfall (W) on carbon exchange parameters (A) in shrub and grass patches, and their impact on carbon exchange parameters normalized by aboveground net primary productivity (ANPP) (B) and leaf area index (LAI) (C) (mean ± SE). Control, without water addition; ER, ecosystem respiration; ERANPP, ecosystem respiration standardized by aboveground net primary productivity; ERLAI, ecosystem respiration standardized by leaf area index; GEP, gross ecosystem productivity; GEPANPP, gross ecosystem productivity standardized by aboveground net primary productivity; GEPLAI, gross ecosystem productivity standardized by leaf area index; Grass, grass patch; NEE, net ecosystem CO2 exchange; NEEANPP, net ecosystem CO2 exchange standardized by aboveground net primary productivity; NEELAI, net ecosystem CO2 exchange standardized by leaf area index; Shrub, shrub patch; SW, increased winter snowfall and summer rainfall. * indicates that the treatment effect is significant in a given year; *, p < 0.05; **, p < 0.01; ***, p < 0.001. Different uppercase letters indicate significant differences between shrub and grass patches in the same year (p < 0.05).
图3 干旱(A)和湿润(B)年份灌丛斑块和草本斑块的碳交换参数(NEE、GEP、ER)以及基于地上净初级生产力(ANPP)、叶面积指数(LAI)标准化数值对季节性降水增加(S、W、SW)的响应(响应值= (处理-对照)/对照) (平均值±标准误)。ER, 生态系统呼吸; ERANPP, 基于地上净初级生产力标准化的生态系统呼吸; ERLAI, 基于叶面积指数标准化的生态系统呼吸; GEP, 总生态系统生产力; GEPANPP, 基于地上净初级生产力标准化的总生态系统生产力; GEPLAI, 基于叶面积指数标准化的总生态系统生产力; Grass, 草本斑块; NEE, 净生态系统碳交换; NEEANPP, 基于地上净初级生产力标准化的净生态系统碳交换; NEELAI, 基于叶面积指数标准化的净生态系统碳交换; S, 冬季增雪; Shrub, 灌丛斑块; SW, 冬季增雪和夏季增雨; W, 夏季增雨。*表示增水处理下碳交换参数的响应值与0比较是否显著; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3 Carbon exchange parameters (NEE, GEP, ER) of shrub and grass patches responses to increased seasonal precipitation (S, W, SW) in dry (A) and wet (B) years, and the corresponding response values are based on standardization of aboveground net primary productivity (ANPP) and leaf area index (LAI) (mean ± SE). ER, ecosystem respiration; ERANPP, ecosystem respiration standardized by aboveground net primary productivity; ERLAI, ecosystem respiration standardized by leaf area index; GEP, gross ecosystem productivity; GEPANPP, gross ecosystem productivity standardized by aboveground net primary productivity; GEPLAI, gross ecosystem productivity standardized by leaf area index; Grass, grass patch; NEE, net ecosystem CO2 exchange; NEEANPP, net ecosystem CO2 exchange standardized by aboveground net primary productivity; NEELAI, net ecosystem CO2 exchange standardized by leaf area index; S, increased winter snowfall; Shrub, shrub patch; SW, increased winter snowfall and summer rainfall; W, increased summer rainfall. Response value = (treatment - control)/control. * indicates whether the response value of the carbon exchange parameter is significant when compared with 0; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图4 冬季增雪(S)和夏季增雨(W)对灌丛斑块(A)和草本斑块(B)的非生物和生物因素的影响(平均值±标准误)。ANPP, 地上净初级生产力; BGB, 地下生物量; Control, 对照; LB, 叶片生物量; RSR, 根冠比; SLR, 茎叶比; SWC0-20, 0-20 cm土壤水分含量; SWC40-80, 40-80 cm土壤水分含量; ST0-10, 0-10 cm土壤温度; SW, 冬季增雪和夏季增雨。非生物因素包括浅层(0-20 cm)和深层(40-80 cm)土壤水分含量、表层土壤温度(0-10 cm), 生物因素包括ANPP、BGB、LB、SLR和RSR。*表示在相应年份处理效应显著; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 4 Effects of increased winter snowfall (S) and increased summer rainfall (W) on abiotic and biological factors in shrub (A) and grass (B) patches (mean ± SE). ANPP, aboveground net primary productivity; BGB, belowground biomass; Control, without water addition; LB, leaf biomass; RSR, root shoot ratio; SLR, stem leaf ratio; SWC0-20, soil water content (0-20 cm depth); SWC40-80, soil water content (40-80 cm depth); ST0-10, soil temperature (0-10 cm depth); SW, increased winter snowfall and summer rainfall. Abiotic factors include soil moisture content in shallow layer (0-20 cm) and deep layer (40-80 cm), surface soil temperature (0-10 cm), while biological factors include ANPP, BGB, LB, SLR and RSR. * indicates that the treatment effect is significant in a given year; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图5 灌丛斑块和草本斑块碳交换参数与浅层(SWC0-20)和深层(SWC40-80)土壤水分、土壤温度(ST0-10)的相关性热图。ER, 生态系统呼吸; ERANPP, 基于地上净初级生产力标准化的生态系统呼吸; ERLAI, 基于叶面积指数标准化的生态系统呼吸; GEP, 总生态系统生产力; GEPANPP, 基于地上净初级生产力标准化的总生态系统生产力; GEPLAI, 基于叶面积指数标准化的总生态系统生产力; NEE, 净生态系统碳交换; NEEANPP, 基于地上净初级生产力标准化的净生态系统碳交换; NEELAI, 基于叶面积指数标准化的净生态系统碳交换; SWC0-20, 0-20 cm土壤水分含量; SWC40-80, 40-80 cm土壤水分含量; ST0-10, 0-10 cm土壤温度。蓝色表示负相关, 橙色表示正相关。椭圆越细长, 颜色越深, 表明两个变量之间的相关性越强。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 5 Correlation heatmaps of carbon exchange parameters with soil moisture content in shallow (SWC0-20) and deep (SWC40-80) layers, and soil temperature (ST0-10) in shrub and grass patches. ER, ecosystem respiration; ERANPP, ecosystem respiration standardized by aboveground net primary productivity; ERLAI, ecosystem respiration standardized by leaf area index; GEP, gross ecosystem productivity; GEPANPP, gross ecosystem productivity standardized by aboveground net primary productivity; GEPLAI, gross ecosystem productivity standardized by leaf area index; NEE, net ecosystem CO2 exchange; NEEANPP, net ecosystem CO2 exchange standardized by aboveground net primary productivity; NEELAI, net ecosystem CO2 exchange standardized by leaf area index; SWC0-20, soil water content (0-20 cm depth); SWC40-80, soil water content (40-80 cm depth); ST0-10, soil temperature (0-10 cm depth). Blue indicates a negative correlation, while orange indicates a positive correlation. The more prolate the ellipse, the darker the color, and the stronger the correlation between the two variables. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图6 灌丛斑块和草本斑块碳交换参数与地上净初级生产力、地下生物量、叶片生物量及分配(根冠比、茎叶比)之间的关系。ER, 生态系统呼吸; GEP, 总生态系统生产力; NEE, 净生态系统碳交换。空心符号代表2020年灌丛斑块或草本斑块, 实心符号代表2021年灌丛斑块或草本斑块。阴影表示拟合模型95%置信区间。因小叶锦鸡儿的地下生物量测定较困难, 本图中仅呈现草本斑块的地下生物量和根冠比。
Fig. 6 Relationships between carbon exchange parameters of shrub and grass patches and aboveground net primary productivity and below-ground biomass, leaf biomass, and allocation (root-shoot ratio (RSR), stem-leaf ratio (SLR)). ER, ecosystem respiration; GEP, gross ecosystem productivity; NEE, net ecosystem CO2 exchange. Hollow symbols represent 2020 shrub or grass patches and solid symbols represent 2021 shrub or grass patches. Shadows represent the 95% confidence intervals of the fitted models. Because it is difficult to measure the belowground biomass of Caragana microphylla, only the belowground biomass and root-shoot ratio of grass patches are shown.
[1] | Archer SR (1994). Woody plant encroachment into southwestern grasslands and savannas: rates, patterns and proximate causes//Vavra M, Laycock W, Pieper R. Ecological Implications of Livestock Herbivory in the West. Society for Range Management, Denver, USA. 13-68. |
[2] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[3] | Biederman JA, Scott RL, Arnone III JA, Jasoni RL, Litvak ME, Moreo MT, Papuga SA, Ponce-Campos GE, Schreiner- McGraw AP, Vivoni ER (2018). Shrubland carbon sink depends upon winter water availability in the warm deserts of North America. Agricultural and Forest Meteorology, 249, 407-419. |
[4] |
Brown JH, Valone TJ, Curtin CG (1997). Reorganization of an arid ecosystem in response to recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 94, 9729-9733.
PMID |
[5] | Chen LY, Shen HH, Fang JY (2014). Shrub-encroached grassland: a new vegetation type. Chinese Journal of Nature, 36, 391-396. |
[陈蕾伊, 沈海花, 方精云 (2014). 灌丛化草原: 一种新的植被景观. 自然杂志, 36, 391-396.] | |
[6] | Chen S, Lin G, Huang J, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15, 2450-2461. |
[7] | Chimner RA, Welker JM, Morgan J, Le Cain D, Reeder J (2010). Experimental manipulations of winter snow and summer rain influence ecosystem carbon cycling in a mixed-grass prairie, Wyoming, USA. Ecohydrology, 3, 284-293. |
[8] | Czobel S, Foti S, Balogh J. Nagy Z, Bartha S, Tuba Z (2005). Chamber series and space scale analysis of CO2 gas exchange in grassland vegetation: a novel approach. Photosynthetica, 43, 267-272. |
[9] | Delgado-Balbuena J, Loescher HW, Aguirre-Gutiérrez CA, Alfaro-Reyna T, Pineda-Martínez LF, Vargas R, Arredondo T (2023). Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland. Biogeosciences, 20, 2369-2385. |
[10] | Deng MF, Li P, Liu WX, Chang PF, Yang L, Wang ZH, Wang J, Liu LL (2023). Deepened snow cover increases grassland soil carbon stocks by incorporating carbon inputs into deep soil layers. Global Change Biology, 29, 4686-4696. |
[11] | Ding W, Wang YB, Xiang GH, Chi YG, Lu SB, Zheng SX (2020). Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe. Chinese Journal of Plant Ecology, 44, 33-43. |
[丁威, 王玉冰, 向官海, 迟永刚, 鲁顺保, 郑淑霞 (2020). 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 44, 33-43.]
DOI |
|
[12] | Dobson A, Hopcraft G, Mduma S, Ogutu JO, Fryxell J, Anderson TM, Archibald S, Lehmann C, Poole J, Caro T, Mulder MB, Holt RD, Berger J, Rubenstein DI, Kahumbu P, et al. (2022). Savannas are vital but overlooked carbon sinks. Science, 375, 392. DOI: 10.1126/science.abn4482. |
[13] |
Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011). Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology Letters, 14, 709-722.
DOI PMID |
[14] | Goodale CL, Davidson EA (2002). Uncertain sinks in the shrubs. Nature, 418, 593-594. |
[15] | Hao GC, Hu ZM, Guo Q, Di K, Li SG (2019). Median to strong rainfall intensity favors carbon sink in a temperate grassland ecosystem in China. Sustainability, 11, 6376. DOI: 10.3390/su11226376. |
[16] | Hao YB, Zhou CT, Liu WJ, Li LF, Kang XM, Jiang LL, Cui XY, Wang YF, Zhou XQ, Xu CY (2017). Aboveground net primary productivity and carbon balance remain stable under extreme precipitation events in a semiarid steppe ecosystem. Agricultural and Forest Meteorology, 240- 241, 1-9. |
[17] | Hovenden MJ, Newton PCD, Wills KE (2014). Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature, 511, 583-586. |
[18] | Hurtt GC, Dubayah R, Drake J, Moorcroft PR, Pacala SW, Blair JB, Fearon MG (2004). Beyond potential vegetation: combining lidar data and a height-structured model for carbon studies. Ecological Applications, 14, 873-883. |
[19] | Hymus GJ, Johnson DP, Dore S, Anderson HP, Ross Hinkle C, Drake BG (2003). Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Global Change Biology, 9, 1802-1812. |
[20] | Jobbágy EG, Sala OE (2000). Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications, 10, 541-549. |
[21] |
Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47.
DOI PMID |
[22] |
Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo Y, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633.
DOI PMID |
[23] |
Kulmatiski A, Beard KH (2022). A modern two-layer hypothesis helps resolve the “savanna problem”. Ecology Letters, 25, 1952-1960.
DOI PMID |
[24] |
Li P, Sayer EJ, Jia Z, Liu WX, Wu YT, Yang S, Wang CZ, Yang L, Chen DM, Bai YF, Liu LL (2020). Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Global Change Biology, 26, 3015-3027.
DOI PMID |
[25] | Ma S, Baldocchi DD, Xu L, Hehn T (2007). Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology, 147, 157-171. |
[26] | Moreno-de las Heras M, Díaz-Sierra R, Turnbull L, Wainwright J (2015). Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships. Biogeosciences, 12, 2907-2925. |
[27] |
Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, et al. (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292, 2316-2320.
PMID |
[28] | Pan Y, Jackson RB, Hollinger DY, Phillips OL, Nowak RS, Norby RJ, Oren R, Reich PB, Lüscher A, Mueller KE, Owensby C, Birdsey R, Hom J, Luo Y (2022). Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nature Ecology & Evolution, 6, 315-323. |
[29] | Peng HY, Li XY, Tong SY (2014). Effects of shrub (Caragana microphylla Lam.) encroachment on water redistribution and utilization in the typical steppe of Inner Mongolia. Acta Ecologica Sinica, 34, 2256-2265. |
[彭海英, 李小雁, 童绍玉 (2014). 内蒙古典型草原小叶锦鸡儿灌丛化对水分再分配和利用的影响. 生态学报, 34, 2256-2265.] | |
[30] | Peng S, Piao S, Shen Z, Ciais P, Sun Z, Chen S, Bacour C, Peylin P, Chen A (2013). Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agricultural and Forest Meteorology, 178- 179, 46-55. |
[31] | Polley HW, Dugas WA, Mielnick PC, Johnson HB (2007). C3-C4 composition and prior carbon dioxide treatment regulate the response of grassland carbon and water fluxes to carbon dioxide. Functional Ecology, 21, 11-18. |
[32] | Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu Y, Running SW, Sitch S, van der Werf GR (2014). Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509, 600-603. |
[33] |
Reynolds JF, Smith DMS, Lambin EF, Turner II BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, et al. (2007). Global desertification: building a science for dryland development. Science, 316, 847-851.
DOI PMID |
[34] |
Sagar R, Li G, Singh JS, Wan S (2019). Carbon fluxes and species diversity in grazed and fenced typical steppe grassland of Inner Mongolia, China. Journal of Plant Ecology, 12, 10-22.
DOI |
[35] |
Throop HL, Reichmann LG, Sala OE, Archer SR (2012). Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia, 169, 373-383.
DOI PMID |
[36] |
van Auken OW (2009). Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90, 2931-2942.
DOI PMID |
[37] | Walter H (1954). Shrub encroachment, a phenomenon in subtropical savanna areas, and its ecological causes. Vegetatio Acta Geobotanica, 5, 6-10. |
[38] |
Wang L, Liu HZ, Sun JH, Feng JW (2016). Water and carbon dioxide fluxes over an alpine meadow in southwest China and the impact of a spring drought event. International Journal of Biometeorology, 60, 195-205.
DOI PMID |
[39] | Wang YB, Meng B, Zhong SZ, Wang DL, Ma JY, Sun W (2018). Aboveground biomass and root/shoot ratio regulated drought susceptibility of ecosystem carbon exchange in a meadow steppe. Plant and Soil, 432, 259-272. |
[40] | Ward D, Wiegand K, Getzin S (2013). Walter’s two-layer hypothesis revisited: back to the roots! Oecologia, 172, 617-630. |
[41] | Xiang GH (2023). Effects of Altered Seasonal Precipitation and Nitrogen Addition on Plant Functional Traits, Community Composition and Productivity in a Shrub-encroached Grassland. PhD dissertation, University of Chinese Academy of Sciences, Beijing. 21-23. |
[向官海 (2023). 季节性降水改变和氮添加对灌丛化草地植物功能性状、群落组成及生产力的影响. 博士学位论文, 中国科学院大学, 北京. 21-23.] | |
[42] | Yan LM, Chen SP, Huang JH, Lin GH (2011). Increasing water and nitrogen availability enhanced net ecosystem CO2 assimilation of a temperate semiarid steppe. Plant and Soil, 349, 227-240. |
[43] | Zhang H, Yu H, Zhou CT, Zhao HT, Qian XQ (2019). Aboveground net primary productivity not CO2 exchange remain stable under three timing of extreme drought in a semi-arid steppe. PLoS ONE, 14, e0214418. DOI: 10.1371/journal.pone.0214418. |
[44] | Zhang XL, Tan YL, Li A, Ren TT, Chen SP, Wang LX, Huang JH (2015). Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe. Scientific Reports, 5, 15549. DOI: 10.1038/srep15549. |
[45] | Zhu JJ, Zhang B, Yan Y, Pan QM (2016). Effects of changing precipitation regime on carbon exchange in a typical steppe ecosystem in Inner Mongolia. Journal of Southwest University for Nationalities (Natural Science Edition), 42, 516-524. |
[朱建军, 张彬, 严月, 潘庆民 (2016). 降水量变化对内蒙古温带典型草原生态系统碳交换的影响. 西南民族大学学报(自然科学版), 42, 516-524.] | |
[46] | Zhu WW, Xu YX, Yu HL, Wang P, Huang JY (2021). Effects of precipitation and nitrogen addition on ecosystem carbon exchange in a desert steppe in Ningxia. Acta Ecologica Sinica, 41, 6679-6691. |
[朱湾湾, 许艺馨, 余海龙, 王攀, 黄菊莹 (2021). 降水量与氮添加对荒漠草原生态系统碳交换的影响. 生态学报, 41, 6679-6691.] | |
[47] | Zhu YK, Shen HH, Akinyemi DS, Zhang PJ, Feng YP, Zhao MY, Kang J, Zhao X, Hu HF, Fang JY (2022). Increased precipitation attenuates shrub encroachment by facilitating herbaceous growth in a Mongolian grassland. Functional Ecology, 36, 2356-2366. |
[1] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[2] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[3] | 王芑丹, 杨温馨, 黄洁钰, 徐昆, 王佩. 灌丛化的蒸散耗水效应数值模拟研究——以内蒙古灌丛化草原为例[J]. 植物生态学报, 2017, 41(3): 348-358. |
[4] | 张璞进, 清华, 张雷, 徐延达, 木兰, 晔薷罕, 邱晓, 常虹, 沈海花, 杨劼. 内蒙古灌丛化草原毛刺锦鸡儿种群结构和空间分布格局[J]. 植物生态学报, 2017, 41(2): 165-174. |
[5] | 刘涛宇, 赵霞, 沈海花, 胡会峰, 黄文江, 方精云. 灌丛化草原灌木和草本植物光谱特征差异及灌木盖度反演——以内蒙古镶黄旗为例[J]. 植物生态学报, 2016, 40(10): 969-979. |
[6] | 张宏, 史培军, 郑秋红. 半干旱地区天然草地灌丛化与土壤异质性关系研究进展[J]. 植物生态学报, 2001, 25(3): 366-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19