植物生态学报 ›› 2024, Vol. 48 ›› Issue (7): 943-954.DOI: 10.17521/cjpe.2023.0234 cstr: 32100.14.cjpe.2023.0234
• 研究论文 • 上一篇
收稿日期:
2023-08-14
接受日期:
2024-02-07
出版日期:
2024-07-20
发布日期:
2024-02-28
通讯作者:
* 张全智(基金资助:
WANG Yan()(), ZHANG Quan-Zhi*(), WANG Chuan-Kuan, GUO Wan-Gui, LIN Jia-Wei
Received:
2023-08-14
Accepted:
2024-02-07
Online:
2024-07-20
Published:
2024-02-28
Contact:
* ZHANG Quan-Zhi(Supported by:
摘要:
土壤生态化学计量是土壤肥力和植物养分状况的重要指标, 探索森林的恢复方式对土壤生态化学计量特征的影响, 可为准确评价生态系统物质循环过程对干扰和恢复的响应提供理论依据和数据支撑。该研究比较测定了东北东部山区人工恢复的3种针阔混交林和天然恢复的4种落叶阔叶林的土壤、凋落物和枯落物的碳(C)、氮(N)和磷(P)含量, 以及土壤pH、土壤密度等理化性质。结果显示: 人工针阔混交林和天然落叶阔叶林的土壤C、N和P含量均随着土壤深度的增加而降低。各林分类型的O (有机质)层土壤C、N和P含量的波动范围分别为53.78-90.59、5.02-7.83和0.75-0.91 g·kg-1。人工针阔混交林O层土壤的C和N含量显著低于天然落叶阔叶林, 而人工针阔混交林A (腐殖质)和B (淀积)层土壤的C、N和P含量均高于天然落叶阔叶林。人工针阔混交林O层土壤的C密度显著低于天然阔叶林。土壤C:N、C:P和N:P的波动范围为10.08-12.53、43.97-135.52和4.56-11.64; O层土壤的C:N在两种恢复方式的森林间无显著差异, 人工针阔混交林O和A层土壤的C:P和N:P显著低于天然落叶阔叶林。土壤各层次的C和N含量均存在显著的正相关关系(R2范围0.40-0.76)。除C:N以外, 恢复方式、土壤发生层及其二者交互作用对土壤C、N、P含量、密度和计量比均存在显著影响。土壤密度和凋落物C含量显著影响土壤C、N和P含量。这些结果表明, 通过人工恢复方式增加针叶树种的比重, 使表层土壤的C、N含量降低, 导致表层土壤的碳固持量减弱; 但是对C:N无显著影响, 表现出相对稳定的土壤C、N计量特征。
王燕, 张全智, 王传宽, 郭万桂, 蔺佳玮. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响. 植物生态学报, 2024, 48(7): 943-954. DOI: 10.17521/cjpe.2023.0234
WANG Yan, ZHANG Quan-Zhi, WANG Chuan-Kuan, GUO Wan-Gui, LIN Jia-Wei. Effects of restoration approaches on forest soil carbon, nitrogen and phosphorus stoichiometry in eastern Northeast China. Chinese Journal of Plant Ecology, 2024, 48(7): 943-954. DOI: 10.17521/cjpe.2023.0234
恢复方式 Restoration approach | 林分类型 Forest stand | 坡位 Location | 坡度 Slope (°) | 林龄 Stand age (a) | 林分密度 Stand density (trees·hm-2) | 胸高断面积 Basal area at breast height (m2·hm-2) | 平均胸径 Mean DBH (cm) | 树种组成 Overstory composition |
---|---|---|---|---|---|---|---|---|
人工恢复 Artificial restoration | 红松林 Pinus koraiensis plantation | 中坡位 Mid-slope | 12 | 56 | 1 989 ± 123 | 47.34 ± 0.32 | 16.22 ± 0.32 | 7PK 3BP |
落叶松林 Larix gmelinii plantation | 下坡位 Toe-slope | 3 | 64 | 739 ± 224 | 32.93 ± 4.09 | 20.30 ± 1.28 | 9LG 1UP | |
水曲柳-落叶松混交林 Fraxinus mandshurica - Larix gmelinii mixed plantation | 中坡位 Mid-slope | 12 | 57 | 1 711 ± 58 | 38.08 ± 2.74 | 14.00 ± 0.54 | 6LG 3FM 1UP | |
天然恢复 Natural restoration | 硬阔叶林 Hardwood stand | 下坡位 Toe-slope | 7 | 67 | 1 300 ± 562 | 35.12 ± 1.58 | 13.62 ± 0.82 | 6FM 2JM 1QM 1UP + AM + PA |
杨桦林 Aspen-birch stand | 中坡位 Mid-slope | 16 | 72 | 1 478 ± 42 | 32.16 ± 3.81 | 13.47 ± 0.63 | 5PD 1FM 1TA 1AM 1QM 1BP + JM + PA | |
杂木林 Mixed deciduous stand | 中坡位 Mid-slope | 14 | 72 | 1 722 ± 302 | 35.61 ± 1.45 | 12.76 ± 0.60 | 2JM 2PD 1PA 1TA 1AM 1QM 1UP 1BP | |
蒙古栎林 Quercus mongolica stand | 上坡位 Upper slope | 23 | 73 | 1 678 ± 82 | 37.43 ± 1.13 | 13.83 ± 0.72 | 10QM + TA + UP |
表1 不同恢复方式下东北东部森林类型立地条件及林分特征综述(平均值±标准误, n = 3)
Table 1 Site conditions and stand characteristics of forest types under different restoration approaches in eastern Northeast China (mean ± SE, n = 3)
恢复方式 Restoration approach | 林分类型 Forest stand | 坡位 Location | 坡度 Slope (°) | 林龄 Stand age (a) | 林分密度 Stand density (trees·hm-2) | 胸高断面积 Basal area at breast height (m2·hm-2) | 平均胸径 Mean DBH (cm) | 树种组成 Overstory composition |
---|---|---|---|---|---|---|---|---|
人工恢复 Artificial restoration | 红松林 Pinus koraiensis plantation | 中坡位 Mid-slope | 12 | 56 | 1 989 ± 123 | 47.34 ± 0.32 | 16.22 ± 0.32 | 7PK 3BP |
落叶松林 Larix gmelinii plantation | 下坡位 Toe-slope | 3 | 64 | 739 ± 224 | 32.93 ± 4.09 | 20.30 ± 1.28 | 9LG 1UP | |
水曲柳-落叶松混交林 Fraxinus mandshurica - Larix gmelinii mixed plantation | 中坡位 Mid-slope | 12 | 57 | 1 711 ± 58 | 38.08 ± 2.74 | 14.00 ± 0.54 | 6LG 3FM 1UP | |
天然恢复 Natural restoration | 硬阔叶林 Hardwood stand | 下坡位 Toe-slope | 7 | 67 | 1 300 ± 562 | 35.12 ± 1.58 | 13.62 ± 0.82 | 6FM 2JM 1QM 1UP + AM + PA |
杨桦林 Aspen-birch stand | 中坡位 Mid-slope | 16 | 72 | 1 478 ± 42 | 32.16 ± 3.81 | 13.47 ± 0.63 | 5PD 1FM 1TA 1AM 1QM 1BP + JM + PA | |
杂木林 Mixed deciduous stand | 中坡位 Mid-slope | 14 | 72 | 1 722 ± 302 | 35.61 ± 1.45 | 12.76 ± 0.60 | 2JM 2PD 1PA 1TA 1AM 1QM 1UP 1BP | |
蒙古栎林 Quercus mongolica stand | 上坡位 Upper slope | 23 | 73 | 1 678 ± 82 | 37.43 ± 1.13 | 13.83 ± 0.72 | 10QM + TA + UP |
土壤发生层 Soil horizon | 恢复方式 Restoration approach | 土壤厚度 Soil thickness (cm) | 土壤密度 Soil bulk density (g·cm-3) |
---|---|---|---|
O | RG | 7.49 ± 0.33 | 0.73 ± 0.02*** |
TR | 7.83 ± 0.32 | 0.59 ± 0.02*** | |
A | RG | 20.70 ± 0.58 | 0.95 ± 0.02 |
TR | 21.17 ± 0.43 | 0.96 ± 0.02 | |
B | RG | 25.86 ± 0.96 | 1.14 ± 0.03*** |
TR | 25.58 ± 0.51 | 1.31 ± 0.02*** |
表2 不同恢复方式下东北东部森林土壤的基本性状
Table 2 Basic properties of the forest soil under two restoration approaches in eastern Northeast China
土壤发生层 Soil horizon | 恢复方式 Restoration approach | 土壤厚度 Soil thickness (cm) | 土壤密度 Soil bulk density (g·cm-3) |
---|---|---|---|
O | RG | 7.49 ± 0.33 | 0.73 ± 0.02*** |
TR | 7.83 ± 0.32 | 0.59 ± 0.02*** | |
A | RG | 20.70 ± 0.58 | 0.95 ± 0.02 |
TR | 21.17 ± 0.43 | 0.96 ± 0.02 | |
B | RG | 25.86 ± 0.96 | 1.14 ± 0.03*** |
TR | 25.58 ± 0.51 | 1.31 ± 0.02*** |
图1 不同恢复方式东北东部森林类型间土壤碳(C)、氮(N)和磷(P)含量比较。RG, 人工恢复; TR, 天然恢复。A, 腐殖质层; B, 淀积层; O, 有机质层。散点图表示各林型的C、N和P含量在不同土壤深度下的分布情况。不同小写字母表示同一恢复方式森林类型不同土壤发生层间差异显著(p < 0.05 )。**, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 1 Comparisons of carbon (C), nitrogen (N) and phosphorus (P) contents in forest soil between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A, humus horizon; B, illuvial horizon; O, organic horizon. The scatter plot shows the distribution of C, N and P contents in different soil depths. Different lowercase letters stand for significant difference among the soil horizon of the same restoration approaches (p < 0.05). **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
图2 不同恢复方式东北东部森林类型间土壤各发生层的碳(C)、氮(N)和磷(P)密度的差异性。RG, 人工恢复; TR, 天然恢复。A, 腐殖质层; B, 淀积层; O, 有机质层。不同小写字母表示同一恢复方式森林类型不同土壤发生层间差异显著(p < 0.05)。**, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 2 Differences in forest soil carbon (C), nitrogen (N) and phosphorus (P) density between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A, humus horizon; B, illuvial horizon; O, organic horizon. Different lowercase letters stand for significant difference among the soil horizon of the same restoration approaches (p < 0.05). **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
图3 不同恢复方式东北东部森林类型间土壤碳氮比、碳磷比和氮磷比差异性。RG, 人工恢复; TR, 天然恢复。A, 腐殖质层; B, 淀积层; O, 有机质层。不同小写字母表示同一恢复方式森林类型不同土壤发生层间差异显著(p < 0.05); *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 3 Differences in soil carbon (C):nitrogen (N), C:phosphorus (P) and N:P between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A, humus horizon; B, illuvial horizon; O, organic horizon. Different lowercase letters stand for significant difference among the soil horizon of the same restoration approaches (p < 0.05). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
图4 不同恢复方式东北东部森林类型间各个土壤发生层的碳(C)-氮(N)、C-磷(P)和N-P含量的相关性分析。RG, 人工恢复; TR, 天然恢复。A-C, O (有机质)层土壤发生层。D-F, A (腐殖质)层土壤发生层。G-I, B (淀积)层土壤发生层。
Fig. 4 Correlation analysis of carbon (C)-nitrogen (N), C-phosphorus (P), and N-P contents by soil horizon between the two restoration approaches in eastern Northeast China. RG, artificial restoration; TR, natural restoration. A-C, soil O (organic) horizon. D-F, soil A (humus) horizon. G-I, soil B (illuvial) horizon.
指标 Indicator | 处理方式 Treatment | 自由度 df | 均方误差 MSE | F | p |
---|---|---|---|---|---|
碳含量 C content | FT | 1 | 977 | 12.95 | *** |
SL | 2 | 27 282 | 316.38 | *** | |
FT × SL | 2 | 3 151 | 41.74 | *** | |
氮含量 N content | FT | 1 | 2.73 | 6.18 | * |
SL | 2 | 197.78 | 448.03 | *** | |
FT × SL | 2 | 21.94 | 49.70 | *** | |
磷含量 P content | FT | 1 | 0.67 | 36.25 | *** |
SL | 2 | 1.75 | 94.28 | *** | |
FT × SL | 2 | 0.06 | 3.14 | * | |
碳密度 C density | FT | 1 | 619 | 5.06 | * |
SL | 2 | 3 261 | 26.69 | *** | |
FT × SL | 2 | 1 385 | 11.34 | *** | |
氮密度 N density | FT | 1 | 12.74 | 16.67 | *** |
SL | 2 | 45.31 | 59.26 | *** | |
FT × SL | 2 | 8.05 | 10.53 | *** | |
磷密度 P density | FT | 1 | 2.74 | 40.57 | *** |
SL | 2 | 4.41 | 65.35 | *** | |
FT × SL | 2 | 0.24 | 3.58 | * | |
C:N | FT | 1 | 12.48 | 2.81 | ns |
SL | 2 | 5.58 | 1.26 | ns | |
FT × SL | 2 | 7.60 | 1.71 | ns | |
C:P | FT | 1 | 20 436 | 30.17 | *** |
SL | 2 | 13 560 | 20.02 | *** | |
FT × SL | 2 | 7 522 | 11.10 | *** | |
N:P | FT | 1 | 165.66 | 24.34 | *** |
SL | 2 | 59.72 | 8.77 | *** | |
FT × SL | 2 | 27.33 | 4.02 | * |
表3 恢复方式和土壤发生层对东北东部森林土壤碳(C)、氮(N)和磷(P)化学计量影响的方差分析
Table 3 ANOVA of the effects of restoration approaches and soil horizon on forest soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in eastern Northeast China
指标 Indicator | 处理方式 Treatment | 自由度 df | 均方误差 MSE | F | p |
---|---|---|---|---|---|
碳含量 C content | FT | 1 | 977 | 12.95 | *** |
SL | 2 | 27 282 | 316.38 | *** | |
FT × SL | 2 | 3 151 | 41.74 | *** | |
氮含量 N content | FT | 1 | 2.73 | 6.18 | * |
SL | 2 | 197.78 | 448.03 | *** | |
FT × SL | 2 | 21.94 | 49.70 | *** | |
磷含量 P content | FT | 1 | 0.67 | 36.25 | *** |
SL | 2 | 1.75 | 94.28 | *** | |
FT × SL | 2 | 0.06 | 3.14 | * | |
碳密度 C density | FT | 1 | 619 | 5.06 | * |
SL | 2 | 3 261 | 26.69 | *** | |
FT × SL | 2 | 1 385 | 11.34 | *** | |
氮密度 N density | FT | 1 | 12.74 | 16.67 | *** |
SL | 2 | 45.31 | 59.26 | *** | |
FT × SL | 2 | 8.05 | 10.53 | *** | |
磷密度 P density | FT | 1 | 2.74 | 40.57 | *** |
SL | 2 | 4.41 | 65.35 | *** | |
FT × SL | 2 | 0.24 | 3.58 | * | |
C:N | FT | 1 | 12.48 | 2.81 | ns |
SL | 2 | 5.58 | 1.26 | ns | |
FT × SL | 2 | 7.60 | 1.71 | ns | |
C:P | FT | 1 | 20 436 | 30.17 | *** |
SL | 2 | 13 560 | 20.02 | *** | |
FT × SL | 2 | 7 522 | 11.10 | *** | |
N:P | FT | 1 | 165.66 | 24.34 | *** |
SL | 2 | 59.72 | 8.77 | *** | |
FT × SL | 2 | 27.33 | 4.02 | * |
图5 土壤碳(C)、氮(N)和磷(P)含量的影响因子的冗余分析(RDA)。DC, 凋落物C含量; DN, 凋落物N含量; DP, 凋落物P含量; KC, 枯落物C含量; KN, 枯落物N含量; KP, 枯落物P含量; pH, 土壤pH; RZ, 土壤密度; SW, 土壤含水率; TC, 土壤C含量; TN, 土壤N含量; TP, 土壤P含量。
Fig. 5 Redundancy analysis (RDA) of the influencing factors of the soil carbon (C), nitrogen (N) and phosphorus (P) content. DC, litterfall C content; DN, litterfall N content; DP, litterfall P content; KC, litter C content; KN, litter N content; KP, litter P content; pH, soil pH; RZ, soil bulk density; SW, soil moisture; TC, soil C content; TN, soil N content; TP, soil P content.
[1] | Angst Š, Mueller CW, Cajthaml T, Angst G, Lhotáková Z, Bartuška M, Špaldoňová A, Frouz J (2017). Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma, 289, 29-35. |
[2] | Averill C, Turner BL, Finzi AC (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543-545. |
[3] | Batjes NH (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163. |
[4] |
Chen C, Zhang SJ, Li LD, Liu ZD, Chen JL, Gu X, Wang LF, Fang X (2019). Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 43, 658-671.
DOI |
[陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰 (2019). 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征. 植物生态学报, 43, 658-671.]
DOI |
|
[5] | Chen MY, Yang X, Shao MA, Wei XR, Li TC (2022). Changes in soil C-N-P stoichiometry after 20 years of typical artificial vegetation restoration in semiarid continental climate zones. Science of the Total Environment, 852, 158380. DOI: 10.1016/j.scitotenv.2022.158380. |
[6] | Chen XW, Li BL (2003). Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management, 186, 197-206. |
[7] | Elser JJ (2000). Ecological stoichiometry: from sea to lake to land. Trends in Ecology & Evolution, 15, 393-394. |
[8] | Fan HB, Wu JP, Liu WF, Yuan YH, Hu L, Cai QK (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392, 127-138. |
[9] | Feng DF, Bao WK, Pang XY (2017). Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests. Journal of Soils and Sediments, 17, 2054-2065. |
[10] | Fu MJ (2009). Nitrogen Transform and Release in Typical Temperate Forest Ecosystems in Northeastern China. PhD dissertation, Northeast Forestry University, Harbin. 24-31. |
[傅民杰 (2009). 东北典型温带森林生态系统氮素转化释放过程的研究. 博士学位论文, 东北林业大学, 哈尔滨. 24-31.] | |
[11] |
Kaiser C, Franklin O, Dieckmann U, Richter A (2014). Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 17, 680-690.
DOI PMID |
[12] | Lambers H, Mougel C, Jaillard B, Hinsinger P (2009). Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 321, 83-115. |
[13] | Li CZ, Li CJ, Zhao LH, Ma YD, Tong XG, Deng J, Ren CJ, Han XH, Yang GH (2019). Dynamics of storage and relative availability of soil inorganic nitrogen along revegetation chronosequence in the Loess Hilly Region of China. Soil and Tillage Research, 187, 11-20. |
[14] | Li CZ, Zhao LH, Sun PS, Zhao FZ, King D, Yang GH, Han XH, Feng YZ, Ren GX (2016). Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the Loess Hilly Region of China. PLoS ONE, 11, 0159075. DOI: 10.1371/journal.pone.0159075. |
[15] | Li J, Ding JZ, Yang SS, Zhao LQ, Li JY, Huo HY, Wang MY, Tan JY, Cao YF, Ren S, Liu YQ, Wang T (2023). Depth-dependent driver of global soil carbon turnover times. Soil Biology & Biochemistry, 185, 109149. DOI: 10.1016/j.soilbio.2023.109149. |
[16] | Liu S, Wang CK (2010). Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems. Acta Ecologica Sinica, 30, 3135-3143. |
[刘爽, 王传宽 (2010). 五种温带森林土壤微生物生物量碳氮的时空格局. 生态学报, 30, 3135-3143.] | |
[17] | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 34, 64-71. |
[刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.]
DOI |
|
[18] | Luo XZ, Hou EQ, Chen JQ, Li J, Zhang LL, Zang XW, Wen DZ (2020). Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China. Catena, 193, 104606. DOI: 10.1016/j.catena.2020.104606. |
[19] | Ma ZZ, Zhang QZ, Wang CK (2023). Long-term dynamics in litter production and their environmental drivers in six temperate forest types. Acta Ecologica Sinica, 43, 7307-7316. |
[马转转, 张全智, 王传宽 (2023). 六种温带森林类型凋落物量长期动态及其环境驱动. 生态学报, 43, 7307-7316.] | |
[20] | Maes SL, Blondeel H, Perring MP, Depauw L, Brūmelis G, Brunet J, Decocq G, den Ouden J, Härdtle W, Hédl R, Heinken T, Heinrichs S, Jaroszewicz B, Kirby K, Kopecký M, Máliš F, Wulf M, Verheyen K, et al. (2019). Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. Forest Ecology and Management, 433, 405-418. |
[21] | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401. |
[22] | Murty D, Kirschbaum MUF, Mcmurtrie RE, McGilvray H (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8, 105-123. |
[23] |
Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters, 14, 493-502.
DOI PMID |
[24] | Peng Y, Schmidt IK, Zheng H, Heděnec P, Bachega LR, Yue K, Wu F, Vesterdal L (2020). Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. Forest Ecology and Management, 478, 118510. DOI: 10.1016/j.foreco.2020.118510. |
[25] | Qi DD, Feng FJ, Lu C, Fu YM (2022). C:N:P stoichiometry of different soil components after the transition of temperate primary coniferous and broad-leaved mixed forests to secondary forests. Soil and Tillage Research, 216, 105260. DOI: 10.1016/j.still.2021.105260. |
[26] |
Qi KB, Pang XY, Yang B, Bao WK (2020). Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations. PeerJ, 8, e9702. DOI: 10.7717/peerj.9702.
PMID |
[27] | Qiao Y, Wang J, Liu HM, Huang K, Yang QS, Lu RL, Yan LM, Wang XH, Xia JY (2020). Depth-dependent soil C-N-P stoichiometry in a mature subtropical broadleaf forest. Geoderma, 370, 114357. DOI: 10.1016/j.geoderma.2020.114357. |
[28] | Rittl TF, Oliveira D, Cerri CEP (2017). Soil carbon stock changes under different land uses in the Amazon. Geoderma Regional, 10, 138-143. |
[29] | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
[30] | Stone MM, Plante AF (2014). Changes in phosphatase kinetics with soil depth across a variable tropical landscape. Soil Biology & Biochemistry, 71, 61-67. |
[31] |
Tian D, Yan ZB, Fang JY (2021). Review on characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713.
DOI |
[田地, 严正兵, 方精云 (2021). 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[32] | Tian LM, Zhao L, Wu XD, Fang HB, Zhao YH, Hu GJ, Yue GY, Sheng Y, Wu JC, Chen J, Wang ZW, Li WP, Zou DF, Ping CL, Shang W, Zhao YG, Zhang GL, et al. (2018). Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Science of the Total Environment, 622-623, 192-202. |
[33] | Tong R, Wu TG, Jiang B, Wang ZG, Xie BL, Zhou BZ (2023). Soil carbon, nitrogen, and phosphorus stoichiometry and its influencing factors in Chinese fir plantations across subtropical China. Frontiers in Forests and Global Change, 5, 1086328. DOI: 10.3389/ffgc.2022.1086328. |
[34] | Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35-48. |
[35] | Wang BR, An SS, Liang C, Liu Y, Kuzyakov Y (2021). Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology & Biochemistry, 162, 108422. DOI: 10.1016/j.soilbio.2021.108422. |
[36] |
Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology, 35, 587-595.
DOI |
[王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011). 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 35, 587-595.]
DOI |
|
[37] | Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. |
[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[38] | Wu XZ, Yan X, Wang B, Liu RT, An H (2018). Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland. Chinese Journal of Plant Ecology, 42, 1022-1032. |
[吴秀芝, 阎欣, 王波, 刘任涛, 安慧 (2018). 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 42, 1022-1032.]
DOI |
|
[39] | Xu Z, Ward S, Chen C, Blumfield T, Prasolova N, Liu J (2008). Soil carbon and nutrient pools, microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia. Journal of Soils and Sediments, 8, 99-105. |
[40] | Yang YS, Guo JF, Chen GS, Yin YF, Gao R, Lin CF (2009). Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 323, 153-162. |
[41] |
Yue K, Fornara DA, Yang WQ, Peng Y, Li ZJ, Wu FZ, Peng CH (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology, 23, 2450-2463.
DOI PMID |
[42] | Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations. Ecological Monographs, 85, 133-155. |
[43] | Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005). Pools and distributions of soil phosphorus in China. Global Biogeochemical Cycles, 19, GB1020. DOI: 10.1029/2004GB002296. |
[44] | Zhang QZ, Wang CK (2010). Carbon density and distribution of six Chinese temperate forests. Science China Life Sciences, 53, 831-840. |
[45] | Zhang QZ, Wang CK, Wang XC, Quan XK (2009). Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 258, 722-727. |
[46] | Zhang QZ, Wang CK, Zhou ZH (2019a). Does the net primary production converge across six temperate forest types under the same climate? Forest Ecology and Management, 448, 535-542. |
[47] | Zhang W, Gao DX, Chen ZX, Li H, Deng J, Qiao WJ, Han XH, Yang GH, Feng YZ, Huang JY (2018). Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China. Geoderma, 325, 152-161. |
[48] | Zhang YH, Xu XL, Li ZW, Liu MX, Xu CH, Zhang RF, Luo W (2019b). Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 650, 2657-2665. |
[49] | Zhou ZH, Wang CK (2016). Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession. Chinese Journal of Plant Ecology, 40, 1257-1266. |
[周正虎, 王传宽 (2016). 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 40, 1257-1266.]
DOI |
[1] | 王晓颖, 孙志高, 陈冰冰, 武慧慧, 张党玉. 闽江河口互花米草残体异位分解及磷养分释放特征[J]. 植物生态学报, 2024, 48(7): 844-857. |
[2] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[7] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[8] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[9] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[10] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[11] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[12] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[13] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[14] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[15] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19