Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (6): 501-511.doi: 10.17521/cjpe.2019.0041

• Research Articles • Previous Articles     Next Articles

Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis

ZHAO Dan-Dan1,2,MA Hong-Yuan1,*(),LI Yang1,2,WEI Ji-Ping1,WANG Zhi-Chun1   

  1. 1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    2 University of Chinese Academy of Science, Beijing 100049, China
  • Received:2019-02-25 Revised:2019-06-10 Online:2019-09-30 Published:2019-06-20
  • Contact: MA Hong-Yuan
  • Supported by:
    Supported by the National Natural Science Foundation of China(41771058);the National Key R&D Program of China(2016YFC0501200);the National Basic Research Program of China(2015CB150802);the National Key Basic Survey of Resources(2015FY110500);the Category A Strategic Leading Science and Technology Project of Chinese Academy of Sciences(XDA2306040303)


Aims The research on the response of plant functional traits to environmental change, such as precipitation change and nutrient additions is very important to understand how plant species adapt to variable environments. Methods We conducted a pot experiment with a gradient of water treatments (increase precipitation by 50%, HW; decrease precipitation by 50%, LW; take 498 mm precipitation as control, MW) and nutrient additions (without nutrient addition, CK; nitrogen (N) addition, NA; phosphorus (P) addition, PA; nitrogen and phosphorus additions, N+P). We investigated 11 plant functional traits and aboveground biomass of Leymus chinensis. Important findings The effects of moisture on plant height, tillers, stem biomass, leaf biomass, leaf area, leaf mass, net photosynthetic rate, transpiration rate, water use efficiency were significant. The effects of fertilizers on tillers, stem biomass, net photosynthetic rate, transpiration rate, water use efficiency were significant. And the combination of fertilizers and moisture had a significant influence on tillers, stem biomass, transpiration rate and water use efficiency (two-way ANOVA). The pattern of functional traits in response to precipitation differed between plants with varied fertilizer additions. Tillers and leaf area were increased in treatments with HW under N and N+P additions, but not changed under CK and P addition. Stem biomass increased along the precipitation gradients under CK, N addition and P addition, but did not change under N+P additions. Specific leaf area with HW was significantly higher than that of MW under N addition, but not changed under other nutrient addition. Short-term nutrient additions significantly affected photosynthetic physiological traits of L. chinensis, but it had no significant effect on morphological traits under the same precipitation. The aboveground biomass of L. chinensis increased with the increase of precipitation, and reached the highest level of 522.55 g·m -2 with HW treatment under N addition. In conclusion, our results indicate that the functional traits in L. chinensis respond to precipitation addition and the patterns of responses differ under different nutrient additions, reflecting the adaptation to changes in water and nutrient availability.

Key words: plant functional traits, morphological traits, physiological traits, aboveground biomass

Table 1

Results of two-way ANOVAs for the effects of water treatments, fertilization treatment and their interactions on functional traits of Leymus chinensis"

因素 Factor d.f. H T SB LB
F p F p F p F p
水分 Water (W) 2 27.819 <0.001 18.582 <0.001 23.314 <0.001 25.679 <0.001
施肥 Fertilization (F) 3 2.307 ns 3.436 <0.05 3.600 <0.05 2.533 ns
水肥交互 W × F 6 1.796 ns 2.925 <0.05 5.637 <0.01 2.372 ns
F p F p F p
水分 W 2 10.384 <0.01 6.842 <0.01 0.846 ns
施肥 F 3 1.416 ns 1.422 ns 2.991 ns
水肥交互 W × F 6 0.610 ns 1.424 ns 1.528 ns
F p F p F p
水分 W 2 115.990 <0.001 86.229 <0.001 105.150 <0.001
施肥 F 3 6.948 <0.001 5.325 <0.01 3.972 <0.05
水肥交互 W × F 6 1.750 ns 5.608 <0.001 4.828 <0.001

Fig. 1

Effects of fertilization and water on height and tillers of Leymus chinensis (mean ± SE). CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments."

Fig. 2

Effects of fertilization and water on biomass allocation of Leymus chinensis (mean ± SE). CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments."

Fig. 3

Effects of fertilization and water on morphological traits of Leymus chinensis (mean ± SE). LA, leaf area; SLA, specific leaf area. CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments."

Fig. 4

Effects of fertilization and water on photosynthetic traits of Leymus chinensis (mean ± SE). Pn, net photosynthesis rate; WUE, water use efficiency. CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments."

Fig. 5

Effects of fertilization and water on above-ground biomass of Leymus chinensis (mean ± SE). CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments."

[1] Bai X, Cheng JH, Zheng SX, Zhan SX, Bai YF (2014). Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe. Chinese Journal of Plant Ecology, 38, 103-115.
[ 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报, 38, 103-115.]
[2] Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372.
[3] Balachowski JA, Volaire FA (2018). Implications of plant functional traits and drought survival strategies for ecological restoration. Journal of Applied Ecology, 55, 631-640.
[4] Barker DH, Vanier C, Namburg E, Charlet TN, Nielsen KM, Newingham BA, Smith SD (2005). Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentate. New Phytologist, 169, 799-808.
[5] Behera SK, Panda RK (2009). Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling. Agricultural Water Management, 96, 1532-1540.
[6] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30-59.
[7] Buckley H, Young CA, Charlton ND, Hendricks WQ, Haley B, Nagabhyru P, Rudgers JA (2019). Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum). Plant and Soil, 434, 425-440.
[8] Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75.
[9] Díaz S, Lavorel S, Mcintyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341.
[10] Djaman K, Mel VC, Diop L, Sow A, EI-Namaky R, Manneh B, Satio K, Futakuchi K, Irmak S (2018). Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water, 10, 711. DOI: 10.3390/w10060711.
[11] Faucon MP, Houben D, Lambers H (2017). Plant functional traits: Soil and ecosystem services. Trends in Plant Science, 22, 385-394.
[12] Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977.
[13] Forrestel EJ, Donoghue MJ, Edwards EJ, Jetz W, du Toit JCO, Smith MD (2017). Different clades and traits yield similar grassland functional responses. Proceedings of the National Academy of Sciences of the United States of America, 114, 705-710.
[14] Gao R, Yang X, Liu G, Huang Z, Walck JL (2015). Effects of rainfall pattern on the growth and fecundity of a dominant dune annual in a semi-arid ecosystem. Plant and Soil, 389, 335-347.
[15] Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neil C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637.
[16] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
[17] Hu ZM, Yu GR, Fan JW, Zhong HP, Wang SQ, Li SG (2010). Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19, 842-851.
[18] Huang JY, Xu P, Yu HL, Yuan ZY, Li LH (2012). Responses of biomass, nutrient allocation of Leymus chinensis along N, P and water gradients. Pratacultural Science, 29, 1589-1595.
[ 黄菊莹, 徐鹏, 余海龙, 袁志友, 李凌浩 (2012). 羊草生物量和养分分配对养分和水分添加的响应. 草业科学, 29, 1589-1595.]
[19] Huang JY, Yuan ZY, Li LH (2009). Changes in [N], [P] and specific leaf area of green leaves of Leymus chinensis along nitrogen, phosphorus and water gradients. Chinese Journal of Plant Ecology, 33, 442-448.
[ 黄菊莹, 袁志友, 李凌浩 (2009). 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化. 植物生态学报, 33, 442-448.]
[20] Jan R, Aga FA, Bahar FA, Singh T, Lone R (2018). Effect of nitrogen and silicon on growth and yield attributes of transplanted rice (Oryza sativa L.) under Kashmir conditions. Journal of Pharmacognosy and Phytochemistry, 7, 328-332.
[21] Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornrlissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng HC, Zimmermann JK, Zimmermann NE, Westoby M (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
[22] Lavorel S, Grigulis K, Lamarque P (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135-147.
[23] LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
[24] Li DJ, Mo JM, Fang YT, Cai XA, Xue JH, Xu GL (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 2004,24, 876-882.
[ 李德军, 莫江明, 方运霆, 蔡锡安, 薛璟花, 徐国良 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24, 876-882.]
[25] Li J, Liu ZS, Xue XQ, Yu XG, Zhang B, Yue YT (2015). Study of rainfall characteristics and pattern in Changchun city. China Water & Wastewater, 31, 100-104.
[ 李晶, 刘志生, 薛喜权, 于相国, 张波, 岳奕彤 (2015). 长春市降雨特征及雨型分析研究. 中国给水排水, 31, 100-104.]
[26] Li KF, Zhang FC, Qi YL, Xing YY, Li ZJ (2010). Effects of water-fertilizer spatial coupling in root zone on winter wheat growth and yield. Chinese Journal of Applied Ecology, 21, 3154-3160.
[ 李开峰, 张富仓, 祁有玲, 邢英英, 李志军 (2010). 根区水肥空间耦合对冬小麦生长及产量的影响. 应用生态学报, 21, 3154-3160.]
[27] Li SX, Li SQ, Gao YJ, Wang XQ, He HX, Du JJ (1994). The mechanism and effects of N fertilization in increasing water use efficiency. Agricultural Research in the Arid Areas, 12, 38-46.
[ 李生秀, 李世清, 高亚军, 王喜庆, 贺海香, 杜建军 (1994). 施用氮肥对提高旱地作物利用土壤水分的作用机理和效果. 干旱地区农业研究, 12, 38-46.]
[28] Li XF (2011). Effects of Water and Fertilizer Cooperation on the Growth Nutrient Absorption and Root Activity of Summer Maize. Master degree dissertation, Hebei Agricultural University, Baoding, Hebei.
[ 李秀芳 (2011). 水肥互作对夏玉米生长与养分吸收及根系活性的影响. 硕士学位论文, 河北农业大学, 河北保定.]
[29] Li YH (1993). Grazing dynamics of the species diversity in Aneurolepidium chinense steppe and Stipa grandis steppe. Acta Botanica Sinica, 35, 877-884.
[ 李永宏 (1993). 放牧影响下羊草草原和大针茅草原植物多样性的变化. 植物学报, 35, 877-884.]
[30] Liu GS, Li XF (2011). Study on Germplasm Resources of Leymus chinensis. Science Press, Beijing.
[ 刘公社, 李晓峰 (2011). 羊草种质资源研究. 科学出版社, 北京.]
[31] Liu XJ, Ma KP (2015). Plant functional traits-concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339.
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
[32] Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013). Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 19, 2775-2784.
[33] Lü XT, Reed SC, Yu Q, Han XG (2016). Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil, 398, 111-120.
[34] Ma HY, Yang HY, Liang ZW, Ooi MKJ (2015). Effects of 10-year management regimes on the soil seed bank in saline- ‌‌alkaline grassland. PLOS ONE, 10, e0122319. DOI: 10.1371/ ‌journal.‌pone.0122319.
[35] Meng FC, Zhang JH, Yao FM (2014). Interactive effects of elevated CO2 concentration and increasing precipitation on yield and growth development in maize. Chinese Journal of Plant Ecology, 38, 1064-1073.
[ 孟凡超, 张佳华, 姚凤梅 (2014). CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响. 植物生态学报, 38, 1064-1073.]
[36] Mokany K, Ash J, Roxburgh S (2010). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893.
[37] Moor H, Hylander K, Norberg J (2015). Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio, 44, 113-126.
[38] Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476, 202-205.
[39] Osborne CP, Charles-Dominique T, Stevens N, Bond WJ, Midgley G, Lehmann CER (2018). Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 220, 10-24.
[40] Poorter L, Rozendaal DMA (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 35-46.
[41] Rao LE, Allen EB (2010). Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia, 162, 1035-1046.
[42] Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
[43] Rosbakh S, Römermann C, Poschlod P (2015). Specific leaf area correlates with temperature: New evidence of trait variation at the population, species and community levels. Alpine Botany, 125, 79-86.
[44] Shipley B (2006). Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology, 20, 565-574.
[45] Song YT, Li Q, Wang P, Zhou DW, Wu yunna (2016). Response of Leymus chinensis functional traits and aboveground biomass to nitrogen addition in Songnen grassland in northeast China. Pratacultural Science, 33, 1383-1390.
[ 宋彦涛, 李强, 王平, 周道玮, 乌云娜 (2016). 羊草功能性状和地上生物量对氮素添加的响应. 草业科学, 33, 1383-1390.]
[46] Swenson NG, Enquist BJ (2007). Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94, 451-459.
[47] Violle C, Navas ML, Vile D, Kazakou E, Fortunerl C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
[48] Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-621.
[ 万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.]
[49] Wang DS (1999). Synergistic Effect and Coupling Model of Fertilizer and Water in Dryland Farmland. China Meteorological Press, Beijing.
[ 汪徳水 (1999). 旱地农田肥水协同效应与耦合模式. 气象出版社, 北京.]
[50] Wang S (2008). Effect of N Rates on Growth of Summer Maize and Drought Threshold under Different Drought Levels. Master degree dissertation, Huazhong Agricultural University, Wuhan.
[ 王双 (2008), 干旱条件下施氮水平对夏玉米生长及干旱阈值的影响. 硕士学位论文, 华中农业大学, 武汉.]
[51] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Dsada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet G, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
[52] Xu XX, Chen GL, Mu XM (1995). The coordinative effect of moisture and fertilizer upon spring wheat yields. Agricultural Research in the Arid Areas, 13, 34-38.
[ 徐学选, 陈国良, 穆兴民 (1995). 水肥对春小麦产量的效应研究. 干旱地区农业研究, 13, 34-38.]
[53] Xu ZZ, Zhou GS (2005). Effects of soil moisture on growth characteristics of Leymus chinensis seedlings under different temperature conditions. Chinese Journal of Ecology, 24, 256-260.
[ 许振柱, 周广胜 (2005). 不同温度条件下土壤水分对羊草幼苗生长特性的影响. 生态学杂志, 24, 256-260.]
[54] Xu ZZ, Zhou GS (2006). Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. Journal of Plant Growth Regulation, 25, 252-266.
[55] Yang X, Li J, Zhao T, Mo L, Zhang J, Ren H, Zhao N, Gao Y (2019). Variation and heritability of morphological and physiological traits among Leymus chinensis genotypes under different environmental conditions. Journal of Arid Land, 11, 66-74.
[56] Yang Y, Fang J, Ma W, Wang W (2008). Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 35, L23710. DOI: 10.1029/2008GL035408.
[57] Yi J, Li QF, Gu AL, Men ZH, He WX (2001). Advances on biology characteristics the rhizomatous grasses. Journal of Arid Land Resources and Environment, 15(S1), 1-16.
[ 易津, 李青丰, 谷安琳, 门中华, 何文兴 (2001). 根茎类禾草生物学特性研究进展. 干旱区资源与环境, 15(S1), 1-16.]
[58] Yue X, Zuo X, Yu Q, Xu C, Lv P, Zhang J, Knapp AK, Smith MD (2019). Response of plant functional traits of Leymus chinensis to extreme drought in Inner Mongolia grasslands. Plant Ecology, 220, 141-149.
[59] Zeng XP, Zhao P, Cai XA, Sun GC, Peng SL (2004). Physioecological characteristics of Woonyoungia septentrionalis seedlings under various soil water conditions. Chinese Journal of Ecology, 23(2), 26-31.
[ 曾小平, 赵平, 蔡锡安, 孙谷畴, 彭少麟 (2004). 不同土壤水分条件下焕镛木幼苗的生理生态特性. 生态学杂志, 23(2), 26-31.]
[60] Zhang GT, Wang KX, Wang LX, Wang Y (2007). Couple effect of the soil water and fertility in sustainable agriculture in Liaoning. Journal of Anhui Agricultural Sciences, 35, 7531-7555.
[ 张广涛, 汪可欣, 王丽学, 王宇 (2007). 水肥耦合技术在辽宁地区农业可持续发展中的应用分析. 安徽农业科学, 35, 7531-7555.]
[61] Zhang HX, Gao YZ, Tasisa BY, Baskin JM, Baskin CC, Lü XT, Zhou DW (2019). Divergent responses to water and nitrogen addition of three perennial bunchgrass species from variously degraded typical steppe in Inner Mongolia. Science of the Total Environment, 647, 1344-1350.
[62] Zhang ZN, Wu GL, Wang D, Deng L, Hao HM, Yang Z, Shangguan ZP (2014). Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau. Acta Prataculturae Sinica, 23, 313-319.
[ 张志南, 武高林, 王冬, 邓蕾, 郝红敏, 杨政, 上官周平 (2014). 黄土高原半干旱区天然草地群落结构与土壤水分关系. 草业学报, 23, 313-319.]
[63] Zhao XF, Xu HL, Zhang P, Tu WX, Zhang QQ (2014). Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands. Chinese Journal of Plant Ecology, 38, 167-177.
[ 赵新风, 许海量, 张鹏, 涂文霞, 张青青 (2014). 养分和水分添加对荒漠草地植物群落结构和物种多样性的影响. 植物生态学报, 38, 167-177.]
[64] Zhou P, Geng Y, Ma WH, He JS (2010). Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China. Chinese Journal of Plant Ecology, 34, 7-16.
[ 周鹏, 耿燕, 马文红, 贺金生 (2010). 温带草地主要优势植物不同器官间功能性状的关联. 植物生态学报, 34, 7-16.]
[65] Zhu JT, Li XY, Zhang XM, Zeng FJ, Yang SG (2010). Leaf functional traits of Ceratoides latens in northern slope of Kunlun Mountain and its regional difference with the altitude. Journal of Desert Research, 30, 1325-1330.
[ 朱军涛, 李向义, 张希明, 曾凡江, 杨尚功 (2010). 昆仑山北坡驼绒藜叶片功能性状及其海拔差异性. 中国沙漠, 30, 1325-1330.]
[66] Zhu TC (2004). Bioecology of Leymus chinensis. Jilin Science and Technology Press, Changchun.
[ 祝廷成 (2004). 羊草生物生态学. 吉林科学技术出版社, 长春.]
[1] Shitong Wang Yaozhan Xu Teng Yang Xinzeng Wei Mingxi Jiang. Impacts of microhabitats on leaf functional traits characteristics of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[3] GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plan Ecolo, 2018, 42(9): 917-925.
[4] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[5] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[6] ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plan Ecolo, 2018, 42(3): 317-326.
[7] Shuoli Zheng, Xiaoling Tian, Chengling Huang, Lingjun Wang, Yuan Feng, Jingli Zhang. Molecular and morphological evidence for natural hybridization between Rhododendron decorum and R. delavayi (Ericaceae) [J]. Biodiv Sci, 2017, 25(6): 627-637.
[8] Shanshan Tan, Renren Wang, Xiaoling Gong, Jiayao Cai, Guochun Shen. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama [J]. Biodiv Sci, 2017, 25(10): 1054-1064.
[9] Xian YANG, Yan-Pei GUO, Anwar MOHHAMOT, Hong-Yan LIU, Wen-Hong MA, Shun-Li YU, Zhi-Yao TANG. Distribution of biomass in relation to environments in shrublands of temperate China [J]. Chin J Plan Ecolo, 2017, 41(1): 22-30.
[10] Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Yang WANG, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China [J]. Chin J Plan Ecolo, 2017, 41(1): 31-42.
[11] Qiang ZHANG, Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Zong-Qiang XIE. Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plan Ecolo, 2017, 41(1): 43-52.
[12] Bin-Bin KONG, Xin-Hua WEI, Jia-Li DU, Ying-Nian LI, Zhi-Hong ZHU. Effects of clipping and fertilization on the temporal dynamics of species diversity and functional diversity and their relationships in an alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(3): 187-199.
[13] Jing WANG, Shan-Shan WANG, Xian-Guo QIAO, Ang LI, Jian-Guo XUE, Muqier HASI, Xue-Yao ZHANG, Jian-Hui HUANG. Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland [J]. Chin J Plan Ecolo, 2016, 40(10): 980-990.
[14] Dan LI, Saruul KANG, Meng-Ying ZHAO, Qing ZHANG, Hai-Juan REN, Jing REN, Jun-Mei ZHOU, Zhen WANG, Ren-Ji WU, Jian-Ming NIU. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China [J]. Chin J Plan Ecolo, 2016, 40(10): 991-1002.
[15] ZHAN Shu-Xia,ZHENG Shu-Xia,WANG Yang,BAI Yong-Fei. Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions [J]. Chin J Plan Ecolo, 2016, 40(1): 36-47.
Full text



[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[4] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[5] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[6] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[7] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[8] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[9] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .
[10] Hui Wang, Zhongjie Gao, Dan Zhang, Hao Cheng, Deyue Yu. Identification of Genes with Soybean Resistance to Common Cutworm by Association Analysis[J]. Chin Bull Bot, 2011, 46(5): 514 -524 .