Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (3): 317-326.doi: 10.17521/cjpe.2017.0046

• Research Articles • Previous Articles     Next Articles

Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration

ZHANG Lu1,HAO Bi-Tai1,QI Li-Xue1,LI Yan-Long1,XU Hui-Min1,YANG Li-Na2,BAOYIN Taogetao1,*()   

  1. 1 College of Ecology and Environmental Science, Inner Mongolia University, Huhhot 010021, China;
    2 Taibus Committee Organization Department, Xilin Gol League, Nei Mongol 027000, China
  • Online:2017-06-16 Published:2018-03-20
  • Contact: Taogetao BAOYIN ORCID:0000-0003-1280-3794 E-mail:bytgt@sohu.com
  • Supported by:
    Supported by the Natural Science Foundation of China(31160138);the Natural Science Foundation of Nei Monggol Autonomous Region, China(2005ZD05);the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAC02B00);the Strategic Priority Research Program of Chinese Academy of Sciences(XDA05050400)

Abstract:

Aims Based on a long-term observation experiment set up in 1983, which was designed to test how different restoration measures would affect the aboveground biomass and soil organic matter content in a degraded Leymus chinensis steppe in Nei Mongol, under the enclosure protection from interference. Our restoration measures included shallow plowing, harrowing and natural restoration.

Methods This experiment used the quadrat method (five replicates) to survey the aboveground biomass and the potassium dichromate oxidation volumetric method to analyze soil organic matter content.

Important findings Results showed that the changes of aboveground biomass in the early period (1983-1991) were significantly higher under shallow plowing treatment than under natural restoration, while those under the harrowing treatment were not significantly different from those under the rest two treatments. In the middle period (1991-2006), there the three treatments had no significant different changes of aboveground biomass. In the late period (2006-2014), the changes of aboveground biomass were in the order of natural restoration > harrowing > shallow plowing, while the difference was significant between natural restoration and shallow plowing. The changes of soil organic matter content in the 0-10 cm soil layer in the early period was significantly different under different treatments and was in the order of shallow plowing > harrowing > natural restoration. Compared to the initial value (1983), natural restoration, harrowing, and shallow plowing treatments increased soil organic matter content by 21%, 45%, and 37% respectively. In middle and late period, natural restoration increased soil organic matter content significantly more than shallow plowing did, while harrowing treatment result was between the two treatment results and was not significantly different from natural restoration and shallow plowing. Natural restoration, harrowing, shallow plowing increased soil organic matter content by 61%, 46%, and 57% respectively in the middle period and by 67%, 51%, 62% in the later period. The changes of soil organic matter content in the 10-30 cm soil layer in the early period was significantly different under different treatments and was in the order of shallow plowing > natural restoration > harrowing. In middle and late periods, there was no significant difference among treatments. In summary, different improvement measures should be chosen according to the objectives of recovery. On a short time scale, shallow plowing is beneficial to the rapid restoration of productivity and soil organic carbon content in the degraded Leymus chinensis steppe, while the benefit of natural restoration and harrowing is more obvious on a longer time scale.

Key words: degraded Leymus chinensis steppe, improving measures, aboveground biomass, organic matter content in soil, dynamic change

Table 1

Effect of different restoration treatments on aboveground biomass (mean ± SE)"

处理 Treatment 地上生物量 Aboveground biomass (g·m-2)
前期 Early period (1987-1991) 中期 Middle period (2002-2006) 后期 Latter period (2010-2014)
自然恢复 Natural restoration 134.15 ± 9.9bB 180.82 ± 17aB 281.75 ± 36.7aA
浅耕翻 Shallow plough 165.85 ± 9.3aA 185.57 ± 15.1aA 192.98 ± 21.5bA
耙地 Harrow 141.56 ± 8.9abC 197.04 ± 10.1aB 237.32 ± 20.6abA

Fig. 1

Variations of aboveground biomass in the past 30 years under different treatments."

Table 2

Correlation analysis of biomass and meteorological data under different restoration treatments"

处理 Treatment 生物量与5-8月平均气温
Biomass and mean air
temperature since May to August
生物量与年平均气温
Biomass and mean
annual air temperature
生物量与5-8月总降水量
Biomass and total
precipitation since May to August
生物量与年总降水量
Biomass and total
annual precipitation
自然恢复
Natural restoration
R2 0.010β9 0.056β3 0.089β1 0.103β3
p 0.866β7 0.470β8 0.297β2 0.242β3
浅耕翻
Shallow plough
R2 0.003β8 0.029β6 0.140β0 0.208β0
p 0.952β1 0.677β0 0.140β7 0.048β3
耙地 Harrow R2 0.017β9 0.118β8 0.041β5 0.081β7
p 0.790β3 0.193β1 0.576β4 0.330β4

Table 3

Soil organic matter content under different restoration treatments (mean ± SE)"

土层深度 Soil depth(cm) 年份 Year 不同处理土壤有机质含量 Soil organic matter content under different treatment (mg·kg-1)
自然恢复 Natural restoration 浅耕翻 Shallow plough 耙地 Harrow
0-10 1991 17.14 ± 0.3cB 21.24 ± 0.2aA 18.37 ± 0.5bB
10-30 14.67 ± 0.5bB 15.60 ± 0.2aA 11.50 ± 0.09cB
0-10 2006 30.04 ± 0.7aA 21.42 ± 2.4bA 27.12 ± 2.8abA
10-30 20.98 ± 2.4aA 15.96 ± 1.8aA 18.86 ± 2.8aA
0-10 2014 35.25 ± 5.8aA 23.65 ± 1.1bA 30.70 ± 1.4abA
10-30 17.69 ± 1.3aAB 14.63 ± 0.5aA 17.40 ± 1.0aA

Table 4

Recovery rate of soil organic matter content (0-10 cm) under different restoration treatments"

处理 Treatment 土壤有机质的恢复速率 Recovery rate of soil organic matter content (mg·kg-1·a-1)
1983-1991年
During 1983-1991
1991-2006年
During 1991-2006
2006-2014年
During 2006-2014
32年平均速率
Average rate of 32 year
自然恢复 Natural restoration 0.69 0.86 0.65 0.76
浅耕翻 Shallow plough 1.20 0.01 0.28 0.39
耙地 Harrow 0.84 0.58 0.45 0.61

Table 5

Recovery rate of soil organic matter content (10-30 cm) under different restoration treatments"

处理 Treatment 土壤有机质的恢复速率 Recovery rate of soil organic matter content (mg·kg-1·a-1)
1983-1991年
During 1983-1991
1991-2006年
During 1991-2006
2006-2014年
During 2006-2014
32年平均速率
Average rate of 32 year
自然恢复 Natural restoration 0.46 0.42 0.41 0.22
浅耕翻 Shallow plough 0.58 0.02 0.17 0.12
耙地 Harrow 0.07 0.49 0.18 0.21

Fig. 2

The relationship between soil organic matter content (0-10 cm) and aboveground biomass under natural restoration treatment."

Fig. 3

The relationship between soil organic matter content (10-30 cm) and aboveground biomass under natural restoration treatment."

Fig. 4

The relationship between soil organic matter content (0-10 cm) and aboveground biomass under shallow plough treatment."

Fig. 5

The relationship between soil organic matter content (10-30 cm) and aboveground biomass under shallow plough treatment."

Fig. 6

The relationship between soil organic matter content (0-10 cm) and aboveground biomass under harrow treatment."

Fig. 7

The relationship between soil organic matter content (10-30 cm) and aboveground biomass under harrow treatment."

[1] Bai JH, Deng W, Zhang YX ( 2002). Spatial distribution of soil organic matter and nitrogen in soil of circular-zonary vegetation areas in Wulanpao Wetland, Inner Mongolia. Journal of Lake Science, 14, 145-151.
doi: 10.3321/j.issn:1003-5427.2002.02.008
白军红, 邓伟, 张玉霞 ( 2002). 内蒙古乌兰泡湿地环带状植被区土壤有机质及全氮空间分异规律. 湖泊科学, 14, 145-151.
doi: 10.3321/j.issn:1003-5427.2002.02.008
[2] Baoyin T, Liu ML, Li XL ( 2003). The study on dynamics succession of community in degenerated steppe of Leymus chinensis after shallow ploughing. Acta Phytoecologica Sinica, 27, 270-277.
doi: 10.3321/j.issn:1000-694X.2006.02.013
宝音陶格涛, 刘美玲, 李晓兰 ( 2003). 退化羊草草原在浅耕翻处理后植物群落演替动态研究. 植物生态学报, 27, 270-277.
doi: 10.3321/j.issn:1000-694X.2006.02.013
[3] Chen XH, Yu XB, Xue Y, Wang XY ( 2015). Comparative study on soil dissolved organic carbon nitrogen pool of different forest types in coastal terraces of Wenchang. Guangdong Agricultural Sciences, 42(8), 38-43.
陈小花, 余雪标, 薛杨, 王小燕 ( 2015). 文昌滨海台地不同森林类型土DOC、DON库比较研究. 广东农业科学, 42(8), 38-43.
[4] Du F, Liang ZS, Xu XX, Shan L, Zhang XC ( 2007). The community biomass of abandoned farm land and its effects on soil nutrition in the Loess Hilly Region of Northern Shaanxi China. Acta Ecologica Sinica, 27, 1673-1683.
doi: 10.3321/j.issn:1000-0933.2007.05.001
杜峰, 梁宗锁, 徐学选, 山仑, 张兴昌 ( 2007). 陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应. 生态学报, 27, 1673-1683.
doi: 10.3321/j.issn:1000-0933.2007.05.001
[5] Gong R, Gao Q, Wang YL ( 2016). Effects of exclosure on community inter-specific relationships in a typical temperate grassland. Chinese Journal of Plant Ecology, 40, 554-563.
龚容, 高琼, 王亚林 ( 2016). 围封对温带半干旱典型草原群落种间关联的影响. 植物生态学报, 40, 554-563.
[6] He NP, Zhang YH, Dai JZ, Han XG, Baoyin T, Yu GR ( 2012). Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 22, 859-873.
doi: 10.1007/s11442-012-0968-4
[7] Li JP, Zheng ZR, Zhao NX, Gao YB ( 2016). Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747.
李静鹏, 郑志荣, 赵念席, 高玉葆 ( 2016). 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.
[8] Li YQ, Huo YS, Zhao YA, Yang LN, Baoyin T ( 2016). Effect of different measures for improving degraded grassland on the soil carbon and nitrogen stocks in steppe of Inner Mongolia. Chinese Journal of Grassland, 38(5), 91-95.
李雅琼, 霍艳双, 赵一安, 杨丽娜, 宝音陶格涛 ( 2016). 不同改良措施对退化草原土壤碳、氮储量的影响. 中国草地学报, 38(5), 91-95.
[9] Liu LL, Jin ZX, Li JH ( 2010). Plant species diversity in Sinocalycanthus chinensis community and its correlation with soil factors in Dalei mountain of Zhejiang Province. Bulletin of Botanical Research, 30, 57-64.
刘丽丽, 金则新, 李建辉 ( 2010). 浙江大雷山夏蜡梅群落植物物种多样性及其与土壤因子相关性. 植物研究, 30, 57-64.
[10] Lu QM, Lin L, Zhuang XY, Chen HY, Huang YF ( 1997). Preliminarystudy on the soil characteristics of different plant communities in Chebailing National Nature Reserve, Guangdong Province. Journal of South China Agricultural University, 18(3), 51-55.
卢其明, 林琳, 庄雪影, 陈红跃, 黄永芳 ( 1997). 车八岭不同演替阶段植物群落土壤特性的初步研究. 华南农业大学学报, 18(3), 51-55.
[11] Matuszewski S, Bajerlein D, Konwerski S, Szpilan K ( 2010). Insect succession and carrion decomposition in selected forests of Central Europe. Part 1: pattern and rate of decomposition. Forensic Science International, 194, 85-93.
doi: 10.1016/j.forsciint.2009.10.016 pmid: 19914786
[12] Qu GH, Guo JX ( 2003). The relationship between different plant communities and soil characteristics in Songnen grassland. Acta Prataculturae Sinica, 12(1), 18-22.
doi: 10.3321/j.issn:1004-5759.2003.01.004
曲国辉, 郭继勋 ( 2003). 松嫩平原不同演替阶段植物群落和土壤特性的关系. 草业学报, 12(1), 18-22.
doi: 10.3321/j.issn:1004-5759.2003.01.004
[13] Tang HY, Yang XS, Shen JL, Zhang CW, Bai X, Guo RP, Li HL, Wu X ( 2007). Effect of different improved measures on vegetation and soil fertility of saline-alkali grassland. Prataculture & Animal Husbandry,( 10), 1- 3, 7.
唐鸿宇, 杨晓松, 沈景林, 张成武, 白雪, 郭瑞萍, 李海龙, 武霞 ( 2007). 不同改良措施对盐碱化草地植被和土壤肥力的影响. 草业与畜牧,( 10), 1- 3, 7.
[14] Wan M, Fan W, Tian DL ( 2008). Discussion on the relationship between the biomass and volume of Quercus variabilis forest at the southern foot of Taihang Mountain. Journal of Anhui Agricultural Sciences, 36, 1437-1438.
doi: 10.3969/j.issn.0517-6611.2008.04.071
万猛, 樊巍, 田大伦 ( 2008). 太行山南麓栓皮栎林生物量和材积关系的探讨. 安徽农业科学, 36, 1437-1438.
doi: 10.3969/j.issn.0517-6611.2008.04.071
[15] Wang CT, Long RJ, Wang GX, Liu W, Wang QL, Zhang L, Wu PF ( 2010). Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 19(6), 25-34.
doi: 10.11686/cyxb20100604
王长庭, 龙瑞军, 王根绪, 刘伟, 王启兰, 张莉, 吴鹏飞 ( 2010). 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业学报, 19(6), 25-34.
doi: 10.11686/cyxb20100604
[16] Wu YN, Luo WT, Huo GW, Lü JZ, Li HS, Hu GW ( 2012). Micro-scale spatial heterogeneity of vegetation community and soil organic matter under different grazing intensities. Journal of Desert Research, 32, 972-979.
乌云娜, 雒文涛, 霍光伟, 吕建洲, 李海山, 胡高娃 ( 2012). 微生境尺度上放牧退化草原群落特征与土壤有机质的空间分异性. 中国沙漠, 32, 972-979.
[17] Xu ZQ, Min QW, Wang YS, li WH, Xu Q ( 2006). Impact of human disturbances on soil nutrient contents of typical grasslands. Journal of Soil and Water Conservation, 20(5), 38-42.
doi: 10.3321/j.issn:1009-2242.2006.05.010
许中旗, 闵庆文, 王英舜, 李文华, 许晴 ( 2006). 人为干扰对典型草原生态系统土壤养分状况的影响. 水土保持学报, 20(5), 38-42.
doi: 10.3321/j.issn:1009-2242.2006.05.010
[18] Yang B, Baoyin T ( 2014). Study on restoration succession of plant community in degenerated Leymus chinensis steppe after harrowing for thirty years. Chinese Journal of Grassland, 36(2), 36-42.
doi: 10.3969/j.issn.1673-5021.2014.02.007
杨波, 宝音陶格涛 ( 2014). 退化羊草草原轻耙处理后30年植物群落恢复演替规律研究. 中国草地学报, 36(2), 36-42.
doi: 10.3969/j.issn.1673-5021.2014.02.007
[19] Yang LN, Baoyin T ( 2008). Effect of different improving measures on degenerated steppe of Leymus chinensis. Journal of Desert Research, 28, 312-317.
doi: 10.7666/d.y1376509
杨丽娜, 宝音陶格涛 ( 2008). 不同改良措施对退化羊草(Leymus chinensis)草原的影响. 中国沙漠, 28, 312-317.
doi: 10.7666/d.y1376509
[20] Yang XL, Zhao KT, Ma HP, Lu SH, Luo J ( 2010). Ecological studies on vegetation quantity in the semi-arid valley region of Lasa. Scientia Silvae Sinicae, 46(10), 15-22.
doi: 10.11707/j.1001-7488.20101003
杨小林, 赵垦田, 马和平, 禄树晖, 罗健 ( 2010). 拉萨半干旱河谷地带的植被数量生态研究. 林业科学, 46(10), 15-22.
doi: 10.11707/j.1001-7488.20101003
[21] Zhang CE, Chen XL ( 1996). A study on relation between soil microbial population distribution and soil fertility before and after vegetation destruction. Journal of Soil and Water Conservation, 2(4), 77-83.
张成娥, 陈小丽 ( 1996). 植被破坏前后土壤微生物分布与肥力的关系. 土壤侵蚀与水土保持学报, 2(4), 77-83.
[22] Zhang QJ, Yu XB, Qian JX, Xiong T ( 2012). Distribution characteristics of plant communities and soil organic matter and main nutrients in the Poyang Lake Nanji Wetland. Acta Ecologica Sinica, 32, 3656-3669. 张全军, 于秀波 钱建鑫, 熊挺 ( 2012). 鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征. 生态学报, 32, 3656-3669.
doi: 10.5846/stxb201111201768
[23] Zhang T, Chen YM, Wu CH ( 2011). Change of underground biomass and soil fertility with restoration stages of Artemisia gmelinii and Stipa bungeana in Loess Hilly Region. Science of Soil and Water Conservation, 9(5), 91-97.
张婷, 陈云明, 武春华 ( 2011). 黄土丘陵区铁杆蒿群落和长芒草群落地上生物量及土壤养分效应. 中国水土保持科学, 9(5), 91-97.
[24] Zhang WH, Guan SY, Li YJ, Wu YZ ( 2000). Effect of different restoration measure on the moisture and nutrient of soil of degradated grassland. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 21(4), 31-35.
张伟华, 关世英, 李跃进, 武永智 ( 2000). 不同恢复措施对退化草地土壤水分和养分的影响. 内蒙古农业大学学报(自然科学版), 21(4), 31-35.
[25] Zhao F, Xie YZ, Ma HB, Shen Y ( 2011). Effects of enclosure on species diversity and soil organic matter of typical steppe. Pratacultural Science, 28, 887-891.
赵菲, 谢应忠, 马红彬, 沈艳 ( 2011). 封育对典型草原植物群落物种多样性及土壤有机质的影响. 草业科学, 28, 887-891.
[1] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[2] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511.
[3] Linlu Shi, Yifei Jia, Aojie Zuo, Tonghui Ma, Jialin Lei, Guangchun Lei, Li Wen. Dynamic change of vegetation cover and productivity of Poyang Lake wetland based on MODIS EVI time series [J]. Biodiv Sci, 2018, 26(8): 828-837.
[4] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[5] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[6] Shanshan Tan, Renren Wang, Xiaoling Gong, Jiayao Cai, Guochun Shen. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama [J]. Biodiv Sci, 2017, 25(10): 1054-1064.
[7] Xian YANG, Yan-Pei GUO, Anwar MOHHAMOT, Hong-Yan LIU, Wen-Hong MA, Shun-Li YU, Zhi-Yao TANG. Distribution of biomass in relation to environments in shrublands of temperate China [J]. Chin J Plan Ecolo, 2017, 41(1): 22-30.
[8] Qiang ZHANG, Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Zong-Qiang XIE. Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plan Ecolo, 2017, 41(1): 43-52.
[9] Jing WANG, Shan-Shan WANG, Xian-Guo QIAO, Ang LI, Jian-Guo XUE, Muqier HASI, Xue-Yao ZHANG, Jian-Hui HUANG. Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland [J]. Chin J Plan Ecolo, 2016, 40(10): 980-990.
[10] Shangbin Bai,Guomo Zhou,Yixiang Wang,Qianqian Liang,Juan Chen,Yanyan Cheng,Rui Shen. Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve [J]. Biodiv Sci, 2013, 21(3): 288-295.
[11] PANG Yong and LI Zeng-Yuan. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains, Northeastern of China [J]. Chin J Plan Ecolo, 2012, 36(10): 1095-1105.
[12] ZHANG Zhi-Dong, ZANG Run-Guo. MODELLING THE SPATIAL DISTRIBUTION OF ABOVEGROUND BIOMASS BASED ON VEGETATION INDEX IN A TROPICAL FOREST IN BAWANG- LING, HAINAN ISLAND, SOUTH CHINA [J]. Chin J Plan Ecolo, 2009, 33(5): 833-841.
[13] YUAN Chun-Ming, LIU Wen-Yao, LI Xiao-Shuang, YANG Guo-Ping. ABOVEGROUND BIOMASS OF LIANAS AND ITS RESPONSE TO ANTHROPOGENIC DISTURBANCES IN MOIST EVERGREEN BROAD-LEAVED FORESTS IN THE AILAO MOUNTAINS OF SOUTHWESTERN CHINA [J]. Chin J Plan Ecolo, 2009, 33(5): 852-859.
[14] YANG Hao, BAI Yong-Fei, LI Yong-Hong, HAN Xing-Guo. RESPONSE OF PLANT SPECIES COMPOSITION AND COMMUNITY STRUCTURE TO LONG-TERM GRAZING IN TYPICAL STEPPE OF INNER MONGOLIA [J]. Chin J Plan Ecolo, 2009, 33(3): 499-507.
[15] KOU Tai-Ji, ZHU Jian-Guo, XIE Zu-Bin, LIU Gang, ZENG Qing. EFFECT OF ELEVATED ATMOSPHERIC CO2 CONCENTRATION AND LEVEL OF NITROGEN FERTILIZER ON ROOT RESPIRATION AND BIOMASS OF WINTER WHEAT [J]. Chin J Plan Ecolo, 2008, 32(4): 922-931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Zhong-Hua YU Jing-Hua YANG Feng-Jian ZU Yuan-Gang. Metabolic Biology of Plant Alkaloids[J]. Chin Bull Bot, 2003, 20(06): 696 -702 .
[2] Chunlin Long;Meilan Li . Status and Conservation Strategies of Community Plant Genetic Resources—A Case Study in Manlun, a Dai Village in Xishuangbanna[J]. Chin Bull Bot, 2006, 23(2): 177 -185 .
[3] KONG Hai-Yan JIA Gui-Xia WEN Yue-Ge. The Role of Calcium in Flower Development[J]. Chin Bull Bot, 2003, 20(02): 168 -177 .
[4] CHEN Jian-San and ZHAO Shi-Xu. A Study Cell Embryology of Rice 84-15[J]. Chin Bull Bot, 1999, 16(03): 284 -287 .
[5] Yanqing Zhou, Wanshen Wang, Xiangnan Wang, Hongying Duan. Recent Progress in DNA Molecular Markers and Gene Functions of Rehmannia glutinosa[J]. Chin Bull Bot, 2015, 50(5): 665 -672 .
[6] Han Yeliang. A Discussion on the Northern Boundary of the Subtropical Evergreen Broad-leaf Forest Zone in Anhui Province (Abstract)[J]. Chin J Plan Ecolo, 1981, 5(1): 54 -57 .
[7] Li Yi-de, Zeng Qing-bo, Wu Zhong-min, Du Zhi-hu, Zhou Guang-yi, Chen Bu-feng, Zhang Zhen-cai, Chen Huan-qiang. Study on Biomass of Tropical Mountain Rain Forest in Jianfengling, Hainan Province[J]. Chin J Plan Ecolo, 1992, 16(4): 293 -300 .
[8] XIA Jiang-Bao, ZHANG Guang-Can, SUN Jing-Kuan, LIU Xia. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity[J]. Chin J Plan Ecolo, 2011, 35(3): 322 -329 .
[9] Deng Lianhe, Zhou Xincheng. Suggestion to Protect the Community Composed of Rare Tree Species of Houhe Forest Area in Wufeng County, Hubei Province[J]. Chin J Plan Ecolo, 1982, 6(1): 84 .
[10] JIANG Xiao-Jie, HU Yan-Ling, HAN Jian-Qiu, and ZHOU Yu-Mei. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants[J]. Chin J Plan Ecolo, 2014, 38(9): 941 -948 .