植物生态学报 ›› 2016, Vol. 40 ›› Issue (11): 1124-1135.DOI: 10.17521/cjpe.2016.0110
所属专题: 生态化学计量
收稿日期:
2016-03-24
接受日期:
2016-05-17
出版日期:
2016-11-10
发布日期:
2016-11-25
通讯作者:
郑成洋
基金资助:
Qiao-Shu-Yi WANG, Cheng-Yang ZHENG*(), Xin-Yang ZHANG, Fa-Xu ZENG, Juan XING
Received:
2016-03-24
Accepted:
2016-05-17
Online:
2016-11-10
Published:
2016-11-25
Contact:
Cheng-Yang ZHENG
摘要:
该文以福建武夷山亚热带常绿阔叶林为研究对象, 通过设置3个氮(N)添加梯度的野外实验, 研究了群落内乔木植物、灌木植物、草本植物、蕨类植物和苔藓植物叶片N、磷(P)化学计量特征对N沉降的响应, 以及不同功能群和物种化学计量特征对N沉降响应的差异。在已开展5年人工N添加的样地内, 3年的监测结果表明: N添加整体上提高了植物叶片N含量, 草本层植物叶片N含量对N添加的响应比乔木层和灌木层植物更加敏感, 优势种米槠(Castanopsis carlesii)、草本植物砂仁(Amomum villosum)、蕨类植物狗脊(Woodwardia japonica)的叶片N含量显著增加。N添加整体上增加了植物叶片P含量, 乔木层植物和灌木层植物叶片P含量没有显著变化, 草本层植物叶片P含量显著增加, 而苔藓植物叶片P含量显著减少。N添加促使武夷山亚热带常绿阔叶林植物叶片N:P由18.67上升至19.72, 加剧了植物生长的P限制; 乔木物种N:P的变化较灌木和草本物种更加稳定。N添加条件下, 植物叶片N:P的变化主要受到叶片P含量而非N含量变化的影响, N添加对生态系统P循环的影响显著。
王乔姝怡, 郑成洋, 张歆阳, 曾发旭, 邢娟. 氮添加对武夷山亚热带常绿阔叶林植物叶片氮磷化学计量特征的影响. 植物生态学报, 2016, 40(11): 1124-1135. DOI: 10.17521/cjpe.2016.0110
Qiao-Shu-Yi WANG, Cheng-Yang ZHENG, Xin-Yang ZHANG, Fa-Xu ZENG, Juan XING. Impacts of nitrogen addition on foliar nitrogen and phosphorus stoichiometry in a subtropical evergreen broad-leaved forest in Mount Wuyi. Chinese Journal of Plant Ecology, 2016, 40(11): 1124-1135. DOI: 10.17521/cjpe.2016.0110
图1 N添加对不同功能群物种叶片N含量、P含量和N:P的影响(平均值±标准误差)。CK、LN、MN和HN指N添加量分别为0、50、100和150 kg N?hm-2?a-1。不同小写字母表示不同处理间差异显著(p < 0.05)。A, D, G, 乔木层植物。B, E, H, 灌木层植物。C, F, I, 林下草本层植物。
Fig. 1 Effects of N addition on foliar N concentrations, P concentrations and N:P ratios in different functional groups (mean ± SE). CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels. A, D, G, Trees. B, E, H, Shrubs. C, F, I, Understory plants.
图2 N添加对植物叶片N含量的影响(平均值±标准误差)。A, 米槠。B, 刨花润楠。C, 杉木。D, 树参。E, 柃木。F, 弯蒴杜鹃。G, 砂仁。H, 狗脊。I, 绿色白发藓。CK、LN、MN和HN指N添加量分别为0、50、100和150 kg N?hm-2?a-1。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 2 Effects of N addition on foliar N concentrations of nine species (mean ± SE). A, Castanopsis carlesii. B, Machilus pauhoi. C, Cunninghamia lanceolata. D, Dendropanax dentiger. E, Eurya japonica. F, Rhododendron henryi. G, Amomum villosum. H, Woodwardia japonica. I, Leucobryum chlorophyllosum. CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels.
图3 N添加对植物叶片P含量的影响(平均值±标准误差)。A, 米槠。B, 刨花润楠。C, 杉木。D, 树参。E, 柃木。F, 弯蒴杜鹃。G, 砂仁。H, 狗脊。I, 绿色白发藓。CK、LN、MN和HN指N添加量分别为0、50、100和150 kg N?hm-2?a-1。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 3 Effects of N addition on foliar P concentrations of nine species (mean ± SE). A, Castanopsis carlesii. B, Machilus pauhoi. C, Cunninghamia lanceolata. D, Dendropanax dentiger. E, Eurya japonica. F, Rhododendron henryi. G, Amomum villosum. H, Woodwardia japonica. I, Leucobryum chlorophyllosum. CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels.
图4 N添加对植物叶片N:P的影响(平均值±标准误差)。A, 米槠。B, 刨花润楠。C, 杉木。D, 树参。E, 柃木。F, 弯蒴杜鹃。G, 砂仁。H, 狗脊。I, 绿色白发藓。CK、LN、MN和HN指N添加量分别为0、50、100和150 kg N?hm-2?a-1。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 4 Effects of N addition on foliar N:P ratios of nine species (mean ± SE). A, Castanopsis carlesii. B, Machilus pauhoi. C, Cunninghamia lanceolata. D, Dendropanax dentiger. E, Eurya japonica. F, Rhododendron henryi. G, Amomum villosum. H, Woodwardia japonica. I, Leucobryum chlorophyllosum. CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels.
图5 叶片N:P变化与叶片N、P含量变化的关系。HN、LN、MN指N添加量分别为150、50和100 kg N·hm-2·a-1。
Fig. 5 Correlations between the relative effect of foliar N:P ratios and the relative effect of N or P concentrations. HN, LN, MN indicate that N addition were 150, 50 and 100 kg N·hm-2·a-1, respectively.
土层深度 Soil depth (cm) | 处理 Treatment | 全碳 Total C (mg?g-1) | 全氮 Total N (mg?g-1) | 全磷 Total P (mg?g-1) | N:P N:P ratios | pH |
---|---|---|---|---|---|---|
0-5 | CK | 47.44 ± 9.22 | 3.39 ± 0.02 | 0.41 ± 0.02a | 8.28 ± 0.30a | 4.27 ± 0.22 |
LN | 49.53 ± 3.69 | 3.65 ± 0.11 | 0.47 ± 0.02b | 7.83 ± 0.07ab | 4.43 ± 0.15 | |
MN | 43.75 ± 3.53 | 3.24 ± 0.10 | 0.43 ± 0.01ab | 7.54 ± 0.12b | 4.42 ± 0.19 | |
HN | 45.59 ± 5.64 | 3.32 ± 0.16 | 0.46 ± 0.02ab | 7.26 ± 0.22b | 4.45 ± 0.06 | |
5-10 | CK | 36.93 ± 7.59 | 2.62 ± 0.20 | 0.39 ± 0.02 | 6.75 ± 0.21a | 4.40 ± 0.17 |
LN | 36.27 ± 3.25 | 2.81 ± 0.09 | 0.43 ± 0.02 | 6.57 ± 0.31a | 4.49 ± 0.14 | |
MN | 28.38 ± 5.53 | 2.32 ± 0.17 | 0.40 ± 0.02 | 5.76 ± 0.18b | 4.44 ± 0.14 | |
HN | 31.37 ± 2.13 | 2.44 ± 0.08 | 0.41 ± 0.01 | 6.04 ± 0.22ab | 4.58 ± 0.06 |
表1 不同N添加处理下的土壤养分状况(平均值±标准误差)
Table 1 Soil nutrient status under different N addition treatments (mean ± SE)
土层深度 Soil depth (cm) | 处理 Treatment | 全碳 Total C (mg?g-1) | 全氮 Total N (mg?g-1) | 全磷 Total P (mg?g-1) | N:P N:P ratios | pH |
---|---|---|---|---|---|---|
0-5 | CK | 47.44 ± 9.22 | 3.39 ± 0.02 | 0.41 ± 0.02a | 8.28 ± 0.30a | 4.27 ± 0.22 |
LN | 49.53 ± 3.69 | 3.65 ± 0.11 | 0.47 ± 0.02b | 7.83 ± 0.07ab | 4.43 ± 0.15 | |
MN | 43.75 ± 3.53 | 3.24 ± 0.10 | 0.43 ± 0.01ab | 7.54 ± 0.12b | 4.42 ± 0.19 | |
HN | 45.59 ± 5.64 | 3.32 ± 0.16 | 0.46 ± 0.02ab | 7.26 ± 0.22b | 4.45 ± 0.06 | |
5-10 | CK | 36.93 ± 7.59 | 2.62 ± 0.20 | 0.39 ± 0.02 | 6.75 ± 0.21a | 4.40 ± 0.17 |
LN | 36.27 ± 3.25 | 2.81 ± 0.09 | 0.43 ± 0.02 | 6.57 ± 0.31a | 4.49 ± 0.14 | |
MN | 28.38 ± 5.53 | 2.32 ± 0.17 | 0.40 ± 0.02 | 5.76 ± 0.18b | 4.44 ± 0.14 | |
HN | 31.37 ± 2.13 | 2.44 ± 0.08 | 0.41 ± 0.01 | 6.04 ± 0.22ab | 4.58 ± 0.06 |
[1] | Aber JD, McDowell W, Nadelhoffer KJ, Magill AH, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited.Bioscience, 48, 921-934. |
[2] | Aber JD, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems.Bioscience, 39, 378-386. |
[3] | Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns?Journal of Ecology, 84, 597-608. |
[4] | Aerts R, Caluwe HD, Beltman B (2003). Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation?Oikos, 101, 489-498. |
[5] | Aerts R, Peijl MJVD (1993). A simple model to explain the dominance of low productive perennials in nutrient poor habitats.Oikos, 66, 144-147. |
[6] | Ågren GI (2004). The C:N:P stoichiometry of autotrophs— Theory and observations.Ecology Letters, 7, 185-191. |
[7] | Ågren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus.New Phytologist, 194, 953-960. |
[8] | Braun S, Thomas VFD, Quiring R, Flückiger W (2010). Does nitrogen deposition increase forest production? The role of phosphorus.Environmental Pollution, 158, 2043-2052. |
[9] | Cui Q, Lü XT, Wang QB, Han XG (2010). Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe.Plant and Soil, 334, 209-219. |
[10] | Demars BOL, Edwards AC (2007). Tissue nutrient concentrations in freshwater aquatic macrophytes: High inter-taxon differences and low phenotypic response to nutrient supply.Freshwater Biology, 52, 2073-2086. |
[11] | Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Noije TV, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006). Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation.Global Biogeochemical Cycles, 20, 16615. |
[12] | Duval BD, Dijkstra P, Natali SM, Megonigal JP, Ketterer ME, Drake BG, Lerdau MT, Gordon G, Anbar AD, Hungate BA (2011). Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.Environmental Science & Technology, 45, 2570-2574. |
[13] | Elliott KJ, White AS (1994). Effects of light, nitrogen, and phosphorus on red pine seedling growth and nutrient use efficiency.Forest Science, 40, 47-58. |
[14] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142. |
[15] | Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010a). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytologist, 186, 593-608. |
[16] | Elser JJ, Peace AL, Kyle M, Wojewodzic M, Mccrackin ML, Andersen T, Hessen DO (2010b). Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton.Ecology Letters, 13, 1256-1261. |
[17] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weide LJ (2000). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550. |
[18] | Fang JY, Guo ZD, Hu HF, Kato T, Muraoka H, Son Y (2014). Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.Global Change Biology, 20, 2019-2030. |
[19] | Fang YT, Mo JM, Zhou GY, Gundersen P, Li DJ, Jiang YQ (2004). The short-term responses of soil available nitrogen of Dinghushan forests to simulated N deposition in subtropical China.Acta Ecologica Sinica, 24, 2353-2359. (in Chinese with English abstract)[方运霆, 莫江明, 周国逸, Gundersen P, 李德军, 江远清 (2004). 南亚热带森林土壤有效氮含量及其对模拟氮沉降增加的初期响应. 生态学报, 24, 2353-2359.] |
[20] | Fujita Y, Robroek BJM, Ruiter PCD, Heil GW, Wassen MJ (2010). Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity.Oikos, 119, 1665-1673. |
[21] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Vöosmarty CJ (2004). Nitrogen cycles: Past, present and future.Biogeochemistry, 70, 153-226. |
[22] | Galloway JN, Sutton MA (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions.Science, 320, 889-892. |
[23] | Gao SP, Li JX, Xu MC, Chen X, Dai J (2007). Leaf N and P stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China.Acta Ecologica Sinica, 27, 947-952. (in Chinese with English abstract)[高三平, 李俊祥, 徐明策, 陈熙, 戴洁 (2007). 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征. 生态学报, 27, 947-952.] |
[24] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
[25] | Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants.Perspectives in Plant Ecology Evolution & Systematics, 5, 37-61. |
[26] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385. |
[27] | Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796. |
[28] | He JS, Wang L, Dan FBF, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
[29] | Huang WJ, Zhou GY, Liu JX, Zhang DQ, Xu ZH, Liu SZ (2012). Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest.Environmental Pollution, 168, 113-120. |
[30] | Irakli L, Elser JJ (2011). The origins of the red field nitrogento- phosphorus ratio are in a homoeostatic protein-to-rRNA ratio.Ecology Letters, 14, 244-250. |
[31] | Jeyasingh PD, Weider LJ, Sterner RW (2009). Genetically- based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore.Ecology Letters, 12, 1229-1237. |
[32] | Kathleen KT, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian Rain Forests. Ecology, 82, 946-954. |
[33] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
[34] | Liu JX, Huang WJ, Zhou G, Zhang D, Liu S, Li Y (2013). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests.Global Change Biology, 19, 208-216. |
[35] | Lu XK, Mo JM, Gilliam FS, Zhou GY, Fang YT (2010). Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest.Global Change Biology, 16, 2688-2700. |
[36] | Magill AH, Aber JD, Berntson GM, Mcdowell WH, Nadelhoffer KJ, Melillo JM, Steudler P (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests.Ecosystems, 3, 238-253. |
[37] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, Mcdowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard forest LTER, Massachusetts, USA.Forest Ecology & Management, 196, 7-28. |
[38] | Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts.Global Biogeochemical Cycles, 22, 37-42. |
[39] | Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.New Phytologist, 193, 696-704. |
[40] | Mcnulty SG, Boggs J, Aber JD, Rustad L, Magill A (2005). Red spruce ecosystem level changes following 14 years of chronic N fertilization.Forest Ecology & Management, 219, 279-291. |
[41] | Mo JM, Li DJ, Gundersen P (2008). Seedling growth response of two tropical tree species to nitrogen deposition in southern China.European Journal of Forest Research, 127, 275-283. |
[42] | Nilsson LO, Wallander H (2003). Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization.New Phytologist, 158, 409-416. |
[43] | Reich PB (2003). The evolution of plant functional variation: Traits, spectra and strategies.International Journal of Plant Sciences, 164, 143-164. |
[44] | Reich PB, Bowman WD (1999). Generality of leaf trait relationships: A test across six biomes.Ecology, 80, 1955-1969. |
[45] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[46] | Rowe EC, Smart SM, Kennedy VH, Emmett BA, Evans CD (2008). Nitrogen deposition increases the acquisition of phosphorus and potassium by heather calluna vulgaris.Environmental Pollution, 155, 201-207. |
[47] | Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives.Perspectives in Plant Ecology Evolution & Systematics, 14, 33-47. |
[48] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. |
[49] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.Journal of Applied Ecology, 40, 523-534. |
[50] | Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora.New Phytologist, 136, 679-689. |
[51] | Tilman D (1990). Constraints and tradeoffs: Toward a predictive theory of competition and succession.Oikos, 58, 3-15. |
[52] | Townsend AR, Bustamante MMC (2007). Controls over foliar N:P ratios in tropical rain forests.Ecology, 88, 107-118. |
[53] | Treseder KK (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies.Ecology Letters, 11, 1111-1120. |
[54] | Treseder KK, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests.Ecology, 82, 946-954. |
[55] | Vitousek PM, Stephen P, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implications and nitrogen-phosphorus interactions.Ecological Applications, 20, 5-15. |
[56] | Vitousek PM, Tilman DG (1997). Technical report: Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
[57] | Wright RF, Rasmussen L (1998). Introduction to the NITREX and EXMAN projects.Forest Ecology & Management, 101, 1-7. |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[10] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[11] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[12] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[15] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3686
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1267
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La