植物生态学报 ›› 2007, Vol. 31 ›› Issue (6): 1145-1153.DOI: 10.17521/cjpe.2007.0142
收稿日期:
2006-07-17
接受日期:
2007-05-17
出版日期:
2007-07-17
发布日期:
2007-11-30
通讯作者:
何兴东
作者简介:
* E-mail: xingd@nankai.edu.cn基金资助:
WANG Hai-Tao, HE Xing-Dong(), GAO Yu-Bao, LU Jian-Guo, XUE Ping-Ping, MA Di
Received:
2006-07-17
Accepted:
2007-05-17
Online:
2007-07-17
Published:
2007-11-30
Contact:
HE Xing-Dong
摘要:
如何用环境属性空间异质性解释植被动态是生态学中的一个重要问题。在该项研究中,选择油蒿(Artemisia ordosica)演替群落为研究对象,在小区面积相同、样方数目和面积相同的条件下,将统计学方法和地统计学方法结合起来,讨论分析了土壤湿度和有机质与油蒿和冷蒿(A. frigida)密度空间异质性变化趋势的相关性,结果表明:在块尺度上(80 m × 80 m),油蒿和冷蒿密度的空间异质性都与土壤湿度的空间异质性有关,其中与冷蒿密度呈现为单调递增,与油蒿密度不呈单调变化,说明土壤湿度与油蒿密度空间异质性的相关性已逐渐减弱,但与耐旱的冷蒿依然较强;土壤有机质的空间异质性也与两种植物密度的空间异质性有关,其中与油蒿密度呈现为单调递增,与冷蒿密度不呈单调变化,说明油蒿的长期定居增加了土壤有机质含量,并促进了冷蒿的侵入;进一步分析表明,该群落中油蒿种群和冷蒿种群均呈集群分布,这种集群分布使得油蒿或冷蒿的密度与土壤湿度或有机质空间异质性之间的关系增强,这从一定程度上说明了冷蒿和油蒿之间的竞争替代关系。因而,土壤空间异质性的变化是半荒漠带油蒿群落演替的基础。
王海涛, 何兴东, 高玉葆, 卢建国, 薛苹苹, 马迪. 油蒿演替群落密度对土壤湿度和有机质空间异质性的响应. 植物生态学报, 2007, 31(6): 1145-1153. DOI: 10.17521/cjpe.2007.0142
WANG Hai-Tao, HE Xing-Dong, GAO Yu-Bao, LU Jian-Guo, XUE Ping-Ping, MA Di. DENSITY IN ARTEMISIA ORDOSICA SUCCESSIONAL COMMUNITY IN RESPONSE TO SPATIAL HETEROGENEITY OF SOIL MOISTURE AND ORGANIC MATTER. Chinese Journal of Plant Ecology, 2007, 31(6): 1145-1153. DOI: 10.17521/cjpe.2007.0142
分布格局 Distribution pattern | 样方数 Quadrat number | 总个体数 Total individuals | 样方平均个体数 Mean individuals | 方差 Variance | χ2检验 Chi-Square test | 分布系数法 Method of distribution coefficient | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p | 格局 Pattern | C | 格局 Pattern | ||||||||||||||||
油蒿 Artemisia ordosica | 400 | 5 388 | 13.99 | 134.37 | 372.79 | 0.00 | 非随机分布 Non-random distribution | 9.60 | 集群分布 Clumped distribution | |||||||||||
冷蒿 A. frigida | 400 | 6 387 | 17.79 | 229.13 | 413.39 | 0.00 | 非随机分布 Non-random distribution | 12.88 | 集群分布 Clumped distribution |
表1 样地内冷蒿和油蒿种群的分布格局
Table 1 Distribution patterns of Artemisia frigida and A. ordosica populations in sampling plots
分布格局 Distribution pattern | 样方数 Quadrat number | 总个体数 Total individuals | 样方平均个体数 Mean individuals | 方差 Variance | χ2检验 Chi-Square test | 分布系数法 Method of distribution coefficient | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p | 格局 Pattern | C | 格局 Pattern | ||||||||||||||||
油蒿 Artemisia ordosica | 400 | 5 388 | 13.99 | 134.37 | 372.79 | 0.00 | 非随机分布 Non-random distribution | 9.60 | 集群分布 Clumped distribution | |||||||||||
冷蒿 A. frigida | 400 | 6 387 | 17.79 | 229.13 | 413.39 | 0.00 | 非随机分布 Non-random distribution | 12.88 | 集群分布 Clumped distribution |
属性 Attributes | 计数 No. | 平均 Mean | 最小值 Min | 最大值 Max | 标准差 SD | 峰值 Kurt | 偏斜度 Skew |
---|---|---|---|---|---|---|---|
土壤湿度 Soil moisture (%) | 400 | 0.60 | 0.22 | 1.31 | 0.20 | 1.60 | 1.02 |
有机质 Soil organic matter (g·kg-1) | 400 | 2.12 | 0.73 | 5.38 | 0.72 | 1.48 | 1.03 |
油蒿密度 Density of Artemisia ordosica (ind.·m-2) | 400 | 0.84 | 0 | 3.56 | 0.72 | 1.42 | 1.34 |
冷蒿密度 Density of A. frigida (ind.·m-2) | 400 | 1.00 | 0 | 4.06 | 0.94 | 0.30 | 0.98 |
表2 土壤湿度、有机质和植物密度的描述统计
Table 2 Descriptive statistics of soil moisture, organic matter, and plant densities
属性 Attributes | 计数 No. | 平均 Mean | 最小值 Min | 最大值 Max | 标准差 SD | 峰值 Kurt | 偏斜度 Skew |
---|---|---|---|---|---|---|---|
土壤湿度 Soil moisture (%) | 400 | 0.60 | 0.22 | 1.31 | 0.20 | 1.60 | 1.02 |
有机质 Soil organic matter (g·kg-1) | 400 | 2.12 | 0.73 | 5.38 | 0.72 | 1.48 | 1.03 |
油蒿密度 Density of Artemisia ordosica (ind.·m-2) | 400 | 0.84 | 0 | 3.56 | 0.72 | 1.42 | 1.34 |
冷蒿密度 Density of A. frigida (ind.·m-2) | 400 | 1.00 | 0 | 4.06 | 0.94 | 0.30 | 0.98 |
参数 Parameters | 自变量x Independent variable | 因变量y Dependant variable | 回归方程 Regression equation | R2 |
---|---|---|---|---|
D | SM | DAF | y=190.5x3-1 062.3x2+1 971.4x-1 215.9 | 0.729 4 |
D | SM | DAO | y=-134.56x3+763.56x2-1 442.4x+908.88 | 0.590 7 |
PH | SM | DAO | y=-78.621x3+185.05x2-144.09x+38.038 | 0.556 2 |
ER | SM | DAO | y=0.040 4x3-2.142x2+33.413x-119.38 | 0.622 6 |
D | DAO | SOM | y=11.424x3-62.344x2+113.07x-66.201 | 0.515 2 |
ER | DAO | SOM | y=-0.539 3x2+36.809x-466.45 | 0.727 4 |
ER | DAF | SOM | y=0.137 7x2-6.339 3x+65.351 | 0.747 9 |
ER | TDOF | SOM | y=-0.043 3x3+2.829 7x2-49.431x+242.39 | 0.550 5 |
表3 植物密度与土壤湿度和有机质变异函数其它参数之间显著的回归关系
Table 3 Significant regression relationship between other parameters for variograms of plant densities and soil moisture and organic matter
参数 Parameters | 自变量x Independent variable | 因变量y Dependant variable | 回归方程 Regression equation | R2 |
---|---|---|---|---|
D | SM | DAF | y=190.5x3-1 062.3x2+1 971.4x-1 215.9 | 0.729 4 |
D | SM | DAO | y=-134.56x3+763.56x2-1 442.4x+908.88 | 0.590 7 |
PH | SM | DAO | y=-78.621x3+185.05x2-144.09x+38.038 | 0.556 2 |
ER | SM | DAO | y=0.040 4x3-2.142x2+33.413x-119.38 | 0.622 6 |
D | DAO | SOM | y=11.424x3-62.344x2+113.07x-66.201 | 0.515 2 |
ER | DAO | SOM | y=-0.539 3x2+36.809x-466.45 | 0.727 4 |
ER | DAF | SOM | y=0.137 7x2-6.339 3x+65.351 | 0.747 9 |
ER | TDOF | SOM | y=-0.043 3x3+2.829 7x2-49.431x+242.39 | 0.550 5 |
[1] | Burke IC, Lauenroth WK, Coffin DP (1995). Soil organic matter recovery in semiarid grasslands: implications for the conservation reserve program. Ecological Applications, 55,793-801. |
[2] | Burke IC, Lauenroth WK, Riggle R, Brannen P, Madigan B, Beard S (1999). Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems, 2,422-438. |
[3] | Chapin FS III, Sala OE, Burke IC, Grime JP, Hooper DU, Lauenroth WK, Lombard A, Mooney HA, Mosier AR, Naeem S, Pacala SW, Roy J, Steffen WL, Tilman D (1998). Ecosystem consequences of changing biodiversity: experimental evidence and a research agenda for the future. BioScience, 48,45-52. |
[4] | Chen YF (陈玉福), Yu FH (于飞海), Dong M (董鸣) (2000). Spatial heterogeneity of the psammophytic half-shrub community in Mu Us Sandland. Acta Ecologica Sinica (生态学报), 20,568-572. (in Chinese with English abstract) |
[5] | Chen YF, Yu FH, Dong M (2002). Scale-dependent spatial heterogeneity of vegetation in Mu Us sandy land, a semi-arid area of China. Plant Ecology, 162,135-142. |
[6] | Cheng XL (程晓莉), An SQ (安树青), Qin P (钦佩), Liu SR (刘世荣) (2003). The heterogeneity in spatial distribution of the above-ground biomass in the degraded grasslands in Ordos. Acta Ecologica Sinica (生态学报), 23,1526-1532. (in Chinese with English abstract) |
[7] | Dudley G (1991). Scale, aggregation, and the modifiable areal unit problem. Operational Geographer, 9,28-33. |
[8] | Forman RTT, Godron M (1986). Landscape Ecology. John Wiley & Sons, Inc., New York. |
[9] | Gallardo A (2003). Spatial variability of soil properties in a floodplain forest in Northwest Spain. Ecosystems, 6,564-576. |
[10] | Goovaerts P (1998). Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27,315-334. |
[11] | Guo K (郭柯), Dong XJ (董学军), Liu ZM (刘志茂) (2000). Characteristics of soil moisture on sand dunes in Mu Us sandy grassland: why Artemisia ordosica declines on old fixed sand dunes. Acta Phytoecologica Sinica (植物生态学报), 24,275-279. (in Chinese with English abstract) |
[12] | He XD (何兴东), Gao YB (高玉葆), Zhao WZ (赵文智), Cong ZL (丛自立) (2004). Geostatistics analyzing to cause of formation of circle distribution of plant communities in Korqin Sandy Land. Chinese Journal of Applied Ecology (应用生态学报), 15,1512-1516. (in Chinese with English abstract) |
[13] | He ZB (何志斌), Zhao WZ (赵文智), Chang XL (常学礼) (2004). The modifiable areal unit problem of spatial heterogeneity of vegetation communities in the transitional zone between oasis and desert. Acta Phytoecologica Sinica (植物生态学报), 28,616-622. (in Chinese with English abstract) |
[14] | Hirobe M, Ohte N, Karasawa N, Zhang GD, Wang LH, Yoshikawa K (2001). Plant species effect on the spatial patterns of soil properties in the Mu-us desert ecosystem, Inner Mongolia, China. Plant and Soil, 234,195-205. |
[15] | Hook PB, Burke IC, Lauenroth WK (1991). Heterogeneity of soils and plant N and C associated with plants and openings in North American shortgrass steppe. Plant and Soil, 138,247-256. |
[16] | Huggett RJ (1998). Soil chronosequences, soil development and soil evolution: a critical review. Catena, 32,155-172. |
[17] | Jackson RB, Caldwell MM (1993). The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology, 74,612-614. |
[18] | Jelinski DE, Wu JG (1996). The modifiable areal unit problems and implication for landscape ecology. Landscape Ecology, 11,129-140. |
[19] | Journel AG, Huijbregts CG (1978). Mining Geostatistics. Academic Press, London. |
[20] | Kelly RH, Burke IC (1997). Heterogeneity of soil organic matter following death of individual plants in shortgrass steppe. Ecology, 78,1256-1261. |
[21] | Levin SA (1992). The problem of pattern and scale in ecology. Ecology, 73,1943-1967. |
[22] | Li XR (李新荣) (2005). Influence of soil spatial heterogeneity on vegetation restoration in arid sandy area. Science in China Series D: Earth Sciences (中国科学D辑·地球科学), 35,361-370. (in Chinese) |
[23] | Lu JG (卢建国), Wang HT (王海涛), He XD (何兴东), Gao YB (高玉葆) (2006). Responses of Artemisia ordosica population to soil moisture spatial heterogeneity on semi-fixed dune of Mu Us sandy land. Chinese Journal of Applied Ecology (应用生态学报), 17,1469-1474. (in Chinese with English abstract) |
[24] | Matheron G (1963). Principles of geostatistics. Economic Geology, 58,1246-1266. |
[25] | Mouillot D, Lepretre A, Andrei-Ruiz MC, Mouillot F, Viale D (2000). A stochastic model for the spatial distribution of species based on an aggregation-repulsion rule. Population Ecology, 42,293-303. |
[26] |
Pickett STA, Cadenasso ML (1995). Landscape ecology, spatial heterogeneity in ecological system. Science, 269,331-334.
DOI URL PMID |
[27] | Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77,364-374. |
[28] |
Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990). Biological feedbacks in global desertification. Science, 247,1043-1048.
URL PMID |
[29] | Vinton MA, Burke IC (1995). Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology, 76,1116-1133. |
[30] | Wang QB (王其兵), Li LH (李凌浩), Liu XH (刘先华), He JS (贺金生) (1998). Spatial heterogeneity of soil organic carbon and total nitrogen in an Xilin River Basin grassland, Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 22,409-414. (in Chinese with English abstract) |
[31] | Wu JG (邬建国), Jelinski DE (1995). Pattern and scale in ecology: modifiable areal unit problem. In: Li B 李博ed. Modern Ecological Issues (现代生态学讲座). Science Press, Beijing,1-9. (in Chinese) |
[32] | Yang BZ (杨宝珍), Dong XJ (董学军), Gao Q (高琼), Liu ZM (刘志茂), Alatengbao (阿拉腾宝)(1994). A study on the transpiration and water-deficit regime of the Artemisia ordosica community. Acta Phytoecologica Sinica (植物生态学报), 18,161-170. (in Chinese with English abstract) |
[33] | Zhao XL (赵兴梁) (1991). Discussion on plant dune fixation on Shapotou area. In: Shapotou Research Station of Desert Science, Chinese Academy of Sciences 中国科学院兰州沙漠研究所沙坡头沙漠科学研究站 ed. Research on Controlling Shifting Sand (No. 2) (流沙治理研究(二)). Ningxia People's Press, Yinchuan,27-57. (in Chinese) |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[3] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[4] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[5] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[6] | 武运涛, 杨森, 王欣, 黄俊胜, 王斌, 刘卫星, 刘玲莉. 草地土壤有机质不同组分氮库对长期氮添加的响应[J]. 植物生态学报, 2021, 45(7): 790-798. |
[7] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[8] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[9] | 冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. |
[10] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[11] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[12] | 张治国, 魏海霞. 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化[J]. 植物生态学报, 2019, 43(11): 979-987. |
[13] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[14] | 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J]. 植物生态学报, 2018, 42(4): 508-516. |
[15] | 张璐, 郝匕台, 齐丽雪, 李艳龙, 徐慧敏, 杨丽娜, 宝音陶格涛. 草原群落生物量和土壤有机质含量对改良措施的动态响应[J]. 植物生态学报, 2018, 42(3): 317-326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19