植物生态学报 ›› 2020, Vol. 44 ›› Issue (11): 1154-1163.DOI: 10.17521/cjpe.2020.0124
张亚洲1,2, 王淞伟1,3, 何小芳1,2, 杨扬1, 陈建国1,**(), 孙航1,**()
收稿日期:
2020-04-27
接受日期:
2020-09-12
出版日期:
2020-11-20
发布日期:
2020-11-30
通讯作者:
陈建国,孙航
作者简介:
Sun H: sunhang@mail.kib.ac.cn*同等贡献
基金资助:
ZHANG Ya-Zhou1,2, WANG Song-Wei1,3, HE Xiao-Fang1,2, YANG Yang1, CHEN Jian-Guo1,**(), SUN Hang1,**()
Received:
2020-04-27
Accepted:
2020-09-12
Online:
2020-11-20
Published:
2020-11-30
Contact:
CHEN Jian-Guo,SUN Hang
About author:
First author contact:*Contributed equally to this work.
Supported by:
摘要:
作为高山生态系统中的奠基种(foundation species), 垫状植物自身种群的繁殖与扩张, 对高山生态系统功能稳定性起着关键作用。但是, 垫状植物如何在极端环境条件下实现资源的有效利用与分配, 达到繁殖最优化, 至今鲜为人知。该研究在滇西北白马雪山沿海拔梯度选择具有不同坡度及坡向的5个团状福禄草(Arenaria polytrichoides)种群, 调查、比较种群内、种群间以及具有不同性系统的植株个体之间的开花面积比、开花方位, 并分析不同生态因子对其开花特性的影响。结果表明: 随着海拔的升高, 团状福禄草个体变小, 其分配到开花的资源比例总体上随海拔上升呈现下降的趋势, 说明团状福禄草的繁殖分配受到由海拔所引起的生态因子的调控。但是, 部分低海拔种群内植物个体的繁殖分配显著低于部分高海拔种群, 说明海拔并非控制植物繁殖分配的唯一因素。此外, 植株开花总面积随植株个体增大而增加, 但开花面积比却随个体增大而变小, 说明植株分配到开花的资源增长速率可能低于植株个体的增长速率。在性别差异方面, 两性植株对开花的资源分配比例要显著高于雌性植株, 但是, 其差异程度受到海拔因素的影响。最后, 在同一种群内, 团状福禄草在冠层表面不同方位上的开花面积比存在显著差异性, 这种差异性在不同种群之间又具有不同的表现形式。
张亚洲, 王淞伟, 何小芳, 杨扬, 陈建国, 孙航. 高山垫状植物团状福禄草开花面积与方位随海拔的变化及其适应性. 植物生态学报, 2020, 44(11): 1154-1163. DOI: 10.17521/cjpe.2020.0124
ZHANG Ya-Zhou, WANG Song-Wei, HE Xiao-Fang, YANG Yang, CHEN Jian-Guo, SUN Hang. Altitudinal variation in flowering area and position and their ecological significances of an alpine cushion Arenaria polytrichoides, a gynodioecious herb. Chinese Journal of Plant Ecology, 2020, 44(11): 1154-1163. DOI: 10.17521/cjpe.2020.0124
图1 研究区域及材料。A, 团状福禄草及开花朝向。B, 野外调查方法。C, 垫状植物内部结构。D, 研究区域及群落景观。
Fig. 1 Study area and materials. A, Arenaria polytrichoides and flowering aspect of one individual. B, Field investigation protocol. C, Structure of the cushion plant. D, Study area and community landscape.
种群编号 Population ID | 生境类型 Habitat type | 海拔 Altitude (m) | 地理坐标 Coordinate | 坡向 Aspect | 坡度 Slope (°) | 调查个体数 Individual number |
---|---|---|---|---|---|---|
1 | 草甸 Meadow | 4 360 | 28.45° N, 99.00° E | 西 West | 15 | 98 (41) |
2 | 草甸 Meadow | 4 450 | 28.45° N, 99.00° E | 西 West | 45 | 90 (36) |
3 | 草甸 Meadow | 4 520 | 28.46° N, 99.00° E | 东南 SE | 40 | 100 (56) |
4 | 草甸-流石滩交错带 Meadow-screes ecotone | 4 720 | 28.48° N, 99.00° E | 东南 SE | 40 | 100 (51) |
5 | 流石滩 Screes | 4 920 | 28.48° N, 99.01° E | 山顶 Peak | 0 | 100 (47) |
表1 团状福禄草种群地理信息、生境类型及各种群内个体调查数量
Table 1 Geographical information of the studied populations, habitat type and number of individuals investigated in each population of Arenaria polytrichoides
种群编号 Population ID | 生境类型 Habitat type | 海拔 Altitude (m) | 地理坐标 Coordinate | 坡向 Aspect | 坡度 Slope (°) | 调查个体数 Individual number |
---|---|---|---|---|---|---|
1 | 草甸 Meadow | 4 360 | 28.45° N, 99.00° E | 西 West | 15 | 98 (41) |
2 | 草甸 Meadow | 4 450 | 28.45° N, 99.00° E | 西 West | 45 | 90 (36) |
3 | 草甸 Meadow | 4 520 | 28.46° N, 99.00° E | 东南 SE | 40 | 100 (56) |
4 | 草甸-流石滩交错带 Meadow-screes ecotone | 4 720 | 28.48° N, 99.00° E | 东南 SE | 40 | 100 (51) |
5 | 流石滩 Screes | 4 920 | 28.48° N, 99.01° E | 山顶 Peak | 0 | 100 (47) |
图2 团状福禄草种群间(A)及研究区域内不同性别间(B)开花面积比(平均值±标准误差)。不同的小写字母表示差异显著(p ≤ 0.05)。
Fig. 2 Comparison of ratios of flowering area among populations (A) and between different gender morphs (B) of Arenaria polytrichoides in the study area (mean ± SE). Different lowercase letters indicate significant difference (p ≤ 0.05).
图3 团状福禄草植株个体大小与其总开花面积及其面积比的关系。A、B, 所有种群。C、D, 种群1。E、F, 种群2。G、H, 种群3。I、J, 种群4。K、L, 种群5。回归线: 普通最小二乘线性回归线; Coef, 回归系数。所有数据被标准化至0-1之间。相关显著性: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001。
Fig. 3 Relationship between plant size and the total flowering area and the relevant ratio of flowering area of Arenaria polytrichoides. A, B, All populations. C, D, Population 1. E, F, Population 2. G, H, Population 3. I, J, Population 4. K, L, Population 5. Regression line: ordinary least squares linear regression lines; coef, regression coefficient. All data are normalized to between 0 and 1. Significant relationship: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001.
模型系数 Value | 标准误差 SE | z | p | w | AICc | |
---|---|---|---|---|---|---|
截距 Intercept | 1.919 1 | 0.186 3 | 10.300 0 | <0.001 | - | |
海拔 Altitude | -0.000 3 | 0.000 0 | -8.020 0 | <0.001 | 1 | -401.4 |
性别 Gender | 0.035 4 | 0.014 4 | 2.460 0 | 0.014 | 0.88 | |
植株大小 Plant size | -0.001 2 | 0.000 2 | -5.210 0 | <0.001 | 1 |
表2 植株开花面积与影响因子间作用的混合效应模型及模型选择结果
Table 2 Results of mixed effect models and selecting models of cushion flowering area and the explainary variables
模型系数 Value | 标准误差 SE | z | p | w | AICc | |
---|---|---|---|---|---|---|
截距 Intercept | 1.919 1 | 0.186 3 | 10.300 0 | <0.001 | - | |
海拔 Altitude | -0.000 3 | 0.000 0 | -8.020 0 | <0.001 | 1 | -401.4 |
性别 Gender | 0.035 4 | 0.014 4 | 2.460 0 | 0.014 | 0.88 | |
植株大小 Plant size | -0.001 2 | 0.000 2 | -5.210 0 | <0.001 | 1 |
图4 团状福禄草各种群内不同性别植物个体开花面积比(平均值±标准误差)。不同小写字母表示组间差异显著(p ≤ 0.05)。
Fig. 4 Ratio of flowering area (mean ± SE) of different gender morphs in the five studied populations of Arenaria polytrichoides. Different lowercase letters indicate significant differences (p ≤ 0.05).
图5 团状福禄草种群内不同方位的开花面积比(平均值±标准误差)比较。不同小写字母表示组间差异显著(p ≤ 0.05)。
Fig. 5 Comparison of ratios of flowering areas (mean ± SE) in different aspects within populations of Arenaria polytrichoides. Different lowercase letters indicate significant differences (p ≤ 0.05).
[1] | Arroyo MTK, Primack R, Armesto J (1982). Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. American Journal of Botany, 69, 82-97. |
[2] | Ashman TL (1994). Reproductive allocation in hermaphrodite and female plants of Sidalcea oregana ssp. spicata (Malvaceae) using four currencies. American Journal of Botany, 81, 433-438. |
[3] | Ashman TL (2006). The evolution of separate sexes: a focus on the ecological context//Harder LD, Barrett SCH. Ecology and Evolution of Flowers. Oxford University Press, Oxford, USA. 204-219. |
[4] | Aubert S, Boucher F, Lavergne S, Renaud J, Choler P (2014). 1914-2014: a revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alpine Botany, 124, 59-70. |
[5] | Bartoń K (2019). MuMIn: Multi-Model Inference. R package version 1.43.6. [2020-09-01]. https://CRAN.R-project.org/package=MuMIn. |
[6] | Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987). Allocating resources to reproduction and defense. BioScience, 37, 58-67. |
[7] | Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants —An economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[8] | Bruce-Okine E, Lal R (1975). Soil erodibility as determined by raindrop technique. Soil Science, 119, 149-157. |
[9] | Brzyski JR, Taylor W, McLetchie DN (2014). Reproductive allocation between the sexes, across natural and novel habitats, and its impact on genetic diversity. Evolutionary Ecology, 28, 247-261. |
[10] | Butterfield BJ, Cavieres LA, Callaway RM, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Schöb C, Xiao S, Zaitchek B, Anthelme F, Björk RG, Dickinson K, Gavilán R, et al. (2013). Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecology Letters, 16, 478-486. |
[11] | Cao JT, Yang H, Cui ZZ, Zhang XJ (2019). Distribution characteristics of soil nutrient contents at different altitudes in the eastern and western slopes of Sejila Mountain, Southeastern Tibet. Journal of Plateau Agriculture, 3(1), 19-27, 35. |
[ 曹舰艇, 杨红, 崔在忠, 张新军 (2019). 藏东南色季拉山东西坡不同海拔高度土壤养分含量分布特征. 高原农业, 3(1), 19-27, 35.] | |
[12] | Case AL, Ashman TL (2005). Sex-specific physiology and its implications for the cost of reproduction//Reekie E, Bazzaz FA. Reproductive Allocation in Plants. Elsevier Academic Press, London. 126-154. |
[13] |
Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Schob C, Xiao S, Anthelme F, Bjork RG, Dickinson KJM, Cranston BH, Gavilan R, et al. (2014). Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 17, 193-202.
URL PMID |
[14] | Charlesworth B, Charlesworth D (1978). A model for the evolution of dioecy and gynodioecy. The American Naturalist, 112, 975-997. |
[15] | Charlesworth D, Morgan MT (1991). Allocation of resources to sex functions in flowering plants. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 332, 91-102 |
[16] | Chen JG, He XF, Wang SW, Yang Y, Sun H (2019). Cushion and shrub ecosystem engineers contribute differently to diversity and functions in alpine ecosystems. Journal of Vegetation Science, 30, 362-374. |
[17] |
Chen JG, Li YB, Yang Y, Sun H (2017a). How cushion communities are maintained in alpine ecosystems: a review and case study on alpine cushion plant reproduction. Plant Diversity, 39, 221-228.
DOI URL PMID |
[18] |
Chen JG, Niu Y, Li ZM, Yang Y, Sun H (2017b). Sex allocation in gynodioecious Cyananthus delavayi differs between gender morphs and soil quality. Plant Reproduction, 30, 107-117.
DOI URL PMID |
[19] | Chen JG, Schöb C, Zhou Z, Gong Q, Li X, Yang Y, Li Z, Sun H (2015a). Cushion plants can have a positive effect on diversity at high elevations in the Himalayan Hengduan Mountains. Journal of Vegetation Science, 26, 768-777. |
[20] | Chen JG, Yang Y, Stöcklin J, Cavieres LA, Peng D, Li Z, Sun H (2015b). Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecology & Diversity, 8, 199-210. |
[21] | Chen JG, Yang Y, Wang SW, Stöcklin J, Peng DL, Sun H (2020). Recruitment of the high elevation cushion plant Arenaria polytrichoides is limited by competition, thus threatened by currently established vegetation. Journal of Systematics and Evolution, 58, 59-68. |
[22] | de Felipe M (2019). agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-0. [2020-09- 01]. https://CRAN.R-project.org/package=agricolae. |
[23] | Delph LF, Carroll SB (2001). Factors affecting relative seed fitness and female frequency in a gynodioecious species, Silene acaulis. Evolutionary Ecology Research, 3, 465-476. |
[24] | Donker NHW, Damen MCJ (1984). Gully system development and an assessment of gully initiation risk in Miocene deposits near Daroca: Spain. Zeitschrift Fur Geomorphologie, 49, 37-50. |
[25] |
Galen C (2006). Solar furnaces or swamp coolers: costs and benefits of water use by solar-tracking flowers of the alpine snow buttercup, Ranunculus adoneus. Oecologia, 148, 195-201.
URL PMID |
[26] | Gihson N, Hope G (1986). On the origin of and evolution of Australasian alpine cushion plants//Barrow BA. Flora and Fauna of Alpine Australasia. CSIRO, Canberra, Australia. 63-81. |
[27] | Guo HJ, Long CL (1998). Yunnan’s Biodiversity. Yunnan Science and Technology Press, Kunming. |
[ 郭辉军, 龙春林 (1998). 云南的生物多样性. 云南科技出版社, 昆明.] | |
[28] |
Hartnett DC (1990). Size-dependent allocation to sexual and vegetative reproduction in four clonal composites. Oecologia, 84, 254-259.
URL PMID |
[29] | Hooper D, Chapin F, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setätä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75(1), 3-35. |
[30] | Kikvidze Z, Brooker RW, Butterfield BJ, Callaway RM, Cavieres LA, Cook BJ, Lortie CJ, Michalet R, Pugnaire FI, Xiao S, Anthelme F, Björk RG, Cranston BH, Gavilan RG, Kanka R, et al. (2015). The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology, 96, 2064-2069. |
[31] |
Kleier C, Trenary T, Graham EA, Stenzel W, Rundel PW (2015). Size class structure, growth rates, and orientation of the central Andean cushion Azorella compacta. PeerJ, 3, e843. DOI: 10.7717/peerj.843.
URL PMID |
[32] | Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd ed. Springer, Berlin. |
[33] | Medan D, Montaldo NH, Devoto M, Maniese A, Vasellati V, Roitman GG, Bartoloni NH (2002). Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arctic, Antarctic, and Alpine Research, 34, 233-241. |
[34] |
Patiño S, Jeffree C, Grace J (2002). The ecological role of orientation in tropical convolvulaceous flowers. Oecologia, 130, 373-379.
URL PMID |
[35] | Peng DL, Zhang ZQ, Xu B, Li ZM, Sun H (2012). Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Botany, 122, 65-73. |
[36] | R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[37] | Reekie EG, Avila-Sakar G (2005). The shape of the trade-off function between reproduction and growth//Reekie EG, Bazzaz FA. Reproductive Allocation in Plants. Elsevier, Amsterdam. 189-214. |
[38] |
Reekie EG, Bazzaz FA (2005). Reproductive Allocation in Plants. Elsevier, Amsterdam.
URL PMID |
[39] | Sakai S, Sakai A (1995). Flower size-dependent variation in seed size: theory and a test. The American Naturalist, 145, 918-934. |
[40] | Stöcklin J, Favre P (1994). Effects of plant size and morphological constraints on variation in reproductive components in 2 related species of Epilobium. Journal of Ecology, 82, 735-746. |
[41] | Sun H, Niu Y, Chen YS, Song B, Liu CQ, Peng DL, Chen JG, Yang Y (2014). Survival and reproduction of plant species in the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 52, 378-396. |
[42] | Therneau TM (2018). coxme: mixed effects cox models. R package version 2.2-10. [2020-09-01]. https://CRAN.R-project.org/package=coxme. |
[43] | Tian H, Wen J, Ma YM, Su ZB, Wei ZG, Wang JM, Zhang TT, Liu R, Hu X (2007). Estimation of solar radiation over the complex terrain of the Heihe River Basin. Plateau Meteorology, 26, 666-676. |
[ 田辉, 文军, 马耀明, 苏中波, 韦志刚, 王介民, 张堂堂, 刘蓉, 胡晓 (2007). 复杂地形下黑河流域的太阳辐射计算. 高原气象, 26, 666-676.] | |
[44] | Vega CRC, Sadras VO, Andrade FH, Uhart SA (2000). Reproductive allometry in soybean, maize and sunflower. Annals of Botany, 85, 461-468. |
[45] | Weiner J (1988). The influence of competition on plant reproduction//Lovett Doust J, Lovett Doust L. Plant Reproductive Ecology: Patterns and Strategies. Oxford University Press, New York. 228-245. |
[46] | Wu CY, Raven PH, Hong DY (2013). Flora of China. Science Press & Missouri Botanical Garden Press, Beijing & St. Louis. |
[47] |
Yang Y, Chen JG, Schöb C, Sun H (2017). Size-mediated interaction between a cushion species and other non- cushion species at high elevations of the Hengduan Mountains, SW China. Frontiers in Plant Science, 8, 465. DOI: 10.3389/fpls.2017.00465.
URL PMID |
[48] | Yang Y, Chen JG, Song B, Niu Y, Peng DL, Zhang JW, Deng T, Luo D, Ma XG, Zhou Z, Sun H (2019). Advances in the studies of plant diversity and ecological adaptation in the subnival ecosystem of the Qinghai-Tibet Plateau. Chinese Science Bulletin, 64, 2856-2864. |
[ 杨扬, 陈建国, 宋波, 牛洋, 彭德力, 张建文, 邓涛, 罗冬, 马祥光, 周卓, 孙航 (2019). 青藏高原冰缘植物多样性适应机制研究进展. 科学通报, 64, 2856-2864.] | |
[49] | Yang Y, Niu Y, Cavieres LA, Sun H (2010). Positive associations between the cushion plant Arenaria polytrichoides (Caryophyllaceae) and other alpine plant species increase with altitude in the Sino-Himalayas. Journal of Vegetation Science, 21, 1048-1057. |
[50] | Zhang C, An YM, Jäschke Y, Wang LL, Zhou ZL, Wang LP, Yang YP, Duan YW (2020). Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands. Chinese Journal of Plant Ecology, 44, 1-21. |
[ 张婵, 安宇梦, Jäschke Y, 王林林, 周知里, 王力平, 杨永平, 段元文 (2020). 青藏高原及周边高山地区的植物繁殖生态学研究进展. 植物生态学报, 44, 1-21.] | |
[51] | Zhang LH, Zhang YW, Zhao XN, Huang SJ, Zhao JM, Yang YF (2014). Effects of different nutrient sources on plasticity of reproductive strategies in a monoecious species, Sagittaria graminea (Alismataceae). Journal of Systematics and Evolution, 52, 84-91. |
[52] | Zhang RZ, Zheng D, Yang QY, Liu YH (1997). The Physical Geography of the Hengduan Mountains. Science Press, Beijing. |
[ 张荣祖, 郑度, 杨勤业, 刘燕华 (1997). 横断山区自然地理. 科学出版社, 北京.] | |
[53] | Zhang S, Ai HL, Yu WB, Wang H, Li DZ (2010). Flower heliotropism of Anemone rivularis (Ranunculaceae) in the Himalayas: effects on floral temperature and reproductive fitness. Plant Ecology, 209, 301-312. |
[54] | Zhang ZJ, He JS, Li JS, Tang ZY (2015). Distribution and conservation of threatened plants in China. Biological Conservation, 192, 454-460. |
[1] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
[2] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[3] | 张婵, 安宇梦, Yun JÄSCHKE, 王林林, 周知里, 王力平, 杨永平, 段元文. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报, 2020, 44(1): 1-21. |
[4] | 王一峰, 靳洁, 侯宏红, 赵博, 曹家豪, 李筱姣. 川西风毛菊花期资源分配随海拔的变化[J]. 植物生态学报, 2015, 39(9): 901-908. |
[5] | 师生波, 尚艳霞, 师瑞, 张波. 高山植物美丽风毛菊PSII光化学效率和光合色素对短期增补UV-B辐射的响应[J]. 植物生态学报, 2012, 36(5): 420-430. |
[6] | 王一峰, 刘启茜, 裴泽宇, 李海燕. 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性[J]. 植物生态学报, 2012, 36(1): 39-46. |
[7] | 师生波, 尚艳霞, 朱鹏锦, 杨莉, 张波. 不同天气类型下UV-B辐射对高山植物美丽风毛菊叶片PSII光化学效率的影响分析[J]. 植物生态学报, 2011, 35(7): 741-750. |
[8] | 师生波, 尚艳霞, 朱鹏锦, 张德罡. 滤除自然光中UV-B辐射成分对高山植物美丽风毛菊光合生理的影响[J]. 植物生态学报, 2011, 35(2): 176-186. |
[9] | 戴攀峰, 谭敦炎. 雪莲的开花生物学特性及其生态适应意义[J]. 植物生态学报, 2011, 35(1): 56-65. |
[10] | 师生波, 李和平, 王学英, 李惠梅, 韩发. 高山植物唐古特山莨菪和唐古特大黄对强太阳辐射光能的利用和耗散特性[J]. 植物生态学报, 2007, 31(1): 129-137. |
[11] | 牛克昌, 赵志刚, 罗燕江, 杜国祯. 施肥对高寒草甸植物群落组分种繁殖分配的影响[J]. 植物生态学报, 2006, 30(5): 817-826. |
[12] | 师生波, 李惠梅, 王学英, 岳向国, 徐文华, 陈桂琛. 青藏高原几种典型高山植物的光合特性比较[J]. 植物生态学报, 2006, 30(1): 40-46. |
[13] | 赵志刚, 杜国祯, 任青吉. 5种毛茛科植物个体大小依赖的繁殖分配和性分配[J]. 植物生态学报, 2004, 28(1): 9-16. |
[14] | 杨持, 贾志斌, 洪洋, 韩向红. 中温型和暖温型草原共有植物种群繁殖分配的比较研究[J]. 植物生态学报, 2002, 26(1): 39-43. |
[15] | 师生波, 贲桂英, 赵新全, 韩发. 增强UV-B辐射对高山植物麻花艽(Gentiana straminea)净光合速率的影响[J]. 植物生态学报, 2001, 25(5): 520-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19