植物生态学报 ›› 2012, Vol. 36 ›› Issue (5): 420-430.DOI: 10.3724/SP.J.1258.2012.00420
所属专题: 青藏高原植物生态学:生理生态学
发布日期:
2012-05-04
通讯作者:
师生波
作者简介:
* E-mail: sbshi@nwipb.cas.cnSHI Sheng-Bo1,*(), SHANG Yan-Xia1,2, SHI Rui3, ZHANG Bo1,2
Published:
2012-05-04
Contact:
SHI Sheng-Bo
摘要:
在中国科学院海北高寒草甸生态系统实验站的综合观测场, 于植物生长季的不同月份进行短期增补UV-B辐射的模拟试验, 研究了高山植物美丽风毛菊(Saussurea superba)的PSII光化学效率、光合色素和UV-B吸收物质对增强UV-B辐射的响应。结果表明, 尽管差异不显著, 暗适应3 min的PSII最大光化学量子效率在不同月份均有降低的趋势, 说明增强UV-B辐射能加剧光合机构的光抑制。不同月份短期增补UV-B辐射均引起光下PSII实际光化学量子效率和光化学猝灭系数的降低, 以及非光化学猝灭系数的增高, 表明增强UV-B辐射能降低叶片的光能捕获效率, 促进非光化学能量耗散过程。增补UV-B辐射后, 叶片光合色素的含量略有降低趋势, 可能与短时间内光合色素形成过程受抑制和光氧化程度的加剧, 以及叶片厚度的略微降低有关。UV-B吸收物质的含量在不同月份没有一致和较为显著的变化, 说明高原强UV-B环境下生存的美丽风毛菊叶表皮层中由类黄酮和衍生多酚类组成的内部紫外屏蔽物质相对稳定, 倾向于较少受增补UV-B辐射的影响。
师生波, 尚艳霞, 师瑞, 张波. 高山植物美丽风毛菊PSII光化学效率和光合色素对短期增补UV-B辐射的响应. 植物生态学报, 2012, 36(5): 420-430. DOI: 10.3724/SP.J.1258.2012.00420
SHI Sheng-Bo, SHANG Yan-Xia, SHI Rui, ZHANG Bo. Responses of PSII photochemistry efficiency and photosynthetic pigments of Saussurea superba to short-term UV-B-supplementation. Chinese Journal of Plant Ecology, 2012, 36(5): 420-430. DOI: 10.3724/SP.J.1258.2012.00420
增补UV-B辐射 Enhanced UV-B | 背景UV-B辐射 Ambient UV-B | 差异显著性 Significance | |
---|---|---|---|
光合有效辐射 PAR (μmol photons·m-2·s-1) | 1 842 ± 33 | 1 825 ± 32 | 0.720 6 |
相对湿度 Relative humidity (%) | 70.98 ± 0.20 | 71.07 ± 0.16 | 0.740 1 |
气温 Air temperature (℃) | 20.43 ± 0.15 | 20.44 ± 0.11 | 0.971 1 |
UV-B (W·m-2) | 4.40 ± 0.06 | 4.28 ± 0.05 | 0.061 0 |
UV-A (mW·m-2) | 23.54 ± 0.14 | 22.12 ± 0.06 | 0 |
表1 短期增补UV-B辐射试验处理架下主要环境因子的变化(2009年7月14日) (平均值±标准误差, n = 15; α = 0.05)
Table 1 Changes of main environmental factors in short-term UV-B-supplementation experiments in July 14, 2009 (mean ± SE, n = 15; α = 0.05)
增补UV-B辐射 Enhanced UV-B | 背景UV-B辐射 Ambient UV-B | 差异显著性 Significance | |
---|---|---|---|
光合有效辐射 PAR (μmol photons·m-2·s-1) | 1 842 ± 33 | 1 825 ± 32 | 0.720 6 |
相对湿度 Relative humidity (%) | 70.98 ± 0.20 | 71.07 ± 0.16 | 0.740 1 |
气温 Air temperature (℃) | 20.43 ± 0.15 | 20.44 ± 0.11 | 0.971 1 |
UV-B (W·m-2) | 4.40 ± 0.06 | 4.28 ± 0.05 | 0.061 0 |
UV-A (mW·m-2) | 23.54 ± 0.14 | 22.12 ± 0.06 | 0 |
图1 2008年植物生长季不同月份增补UV-B辐射处理对美丽风毛菊叶片PSII最大光化学量子效率(F(v)/F(m)) (A)和PSII有效光化学量子效率(Fv′/Fm′) (B)的影响(平均值±标准误差)。
Fig. 1 Effects of short-term UV-B-supplementation on 3-min dark adapted and light adapted maximum quantum efficiency of PSII photochemistry (F(v)/F(m) (A) and (Fv′/Fm′) (B)) in Saussurea superba during plants growing season in 2008 (mean ± SE).
图2 2008年植物生长季不同月份短期增补UV-B辐射处理对美丽风毛菊叶片光化学(A)和非光化学猝灭系数(B)的影响(平均值±标准误差)。
Fig. 2 Effects of short-term UV-B supplementation on photochemical and non-photochemical quenching (qP) (A) and (NPQ) (B) in Saussurea superba during plants growing season in 2008 (mean ± SE).
图3 2008年植物生长季不同月份短期增补UV-B辐射处理对美丽风毛菊叶片光合色素的影响(平均值±标准误差, n = 6)。*, 处理间差异显著(p < 0.05)。
Fig. 3 Effects of short-term UV-B supplementation on photosynthetic pigment contents in Saussurea superba measured in different months during the plant growing season in 2008 (mean ± SE, n = 6). Car, carotinoid; Chl, chlorophyll. *, Significant difference between the treatments (p < 0.05).
图4 2008年植物生长季不同月份短期UV-B辐射处理对美丽风毛菊叶片中UV-B吸收物质的影响(平均值±标准误差, n = 6)。
Fig. 4 Influence of short-term UV-B radiation on UV-B-abs- orbing compounds in Saussurea superba in different months during plant growing season in 2008 (mean ± SE, n = 6).
图5 2008年植物生长季不同月份短期UV-B辐射处理对美丽风毛菊叶比重的影响(平均值±标准误差, n = 6)。
Fig. 5 Influence of short-term UV-B radiation on leaf weight ratio in Saussurea superba in different months during plant growing season in 2008 (mean ± SE, n = 6).
[1] | Allen DJ, Nogués S, Baker NR (1998). Ozone depletion and increased UV-B radiation: Is there a real threat to photosynthesis? Journal Experimental Botany, 49, 1775-1788. |
[2] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI URL PMID |
[3] |
Bilger W, Björkman O (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light- induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
DOI URL PMID |
[4] | Bilger W, Johnsen T, Schreiber U (2001). UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. Journal Experimental Botany, 52, 2007-2014. |
[5] | Björn LO (1999). Ultraviolet radiation, the ozone layer and ozone depletion. In: Rozema J ed. The Effects of Enhanced UV-B Radiation on Terrestrial Ecosystem. Backhuys, Leiden, the Netherlands. 21-27. |
[6] | Björn LO, Teramura AH (1993). Simulation of daylight ultraviolet radiation and effects of ozone depiction. In: Young AR, Björn LO, Moan J, Nultsch W eds. Environmental UV Photobiology. Plenum Press, New York. 41-71. |
[7] | Bornman JF (1989). Target sites of UV-B radiation in photosynthesis of higher plants. Journal of Photochemistry and Photobiology B: Biology, 4, 145-158. |
[8] |
Britt AB (1999). Molecular genetics of DNA repair in higher plants. Trends in Plant Science, 4, 20-25.
URL PMID |
[9] |
Caldwell MM, Flint SD (1994). Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climate Change, 28, 375-394.
DOI URL |
[10] |
Costa H, Gallego SM, Tomaro ML (2002). Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Science, 162, 939-945.
DOI URL |
[11] |
Flint SD, Ryel RJ, Caldwell MM (2003). Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. Agricultural and Forest Meteorology, 120, 177-189.
DOI URL |
[12] |
Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineaux PM (2009). The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. The Plant Cell, 21, 2143-2162.
DOI URL PMID |
[13] |
Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 990, 87-92.
DOI URL |
[14] |
Jansen MAK, Gaba V, Greenberg BM (1998). Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science, 3, 131-135.
DOI URL |
[15] |
Joshi PN, Ramaswamy NK, Iyler RK, Nair JS, Pradhan MK, Gartia S, Biswal B, Biswal UC (2007). Partial protection of photosynthetic apparatus from UV-B-induced damage by UV-A radiation. Environmental and Experimental Botany, 59, 166-172.
DOI URL |
[16] |
Lau TSL, Eno E, Goldstein G, Smith C, Christopher DA (2006). Ambient levels of UV-B in Hawaii combined with nutrient deficiency decrease photosynthesis in near- isogenic maize lines varying in leaf flavonoids: flavonoids decrease photoinhibition in plants exposed to UV-B. Photosynthetica, 44, 394-403.
DOI URL |
[17] |
Lizana XC, Hess S, Calderini DF (2009). Crop phenology modifies wheat responses to increased UV-B radiation. Agricultural and Forest Meteorology, 149, 1964-1974.
DOI URL |
[18] | Madronich S, Velders G, Daniel J, Lal M, McKulloch A, Slaper H (1999). Halocarbon scenarios for the future ozone layer and related consequence. In: Albritton D, Aucamp P, Megie G, Watson R eds. Scientific Assessment of Ozone Depletion: 1998. World Meteorological Organization, Geneva. 11.1-11.38. |
[19] |
McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyasd M (2007). Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochemical and Photobiological Sciences, 6, 218-231.
URL PMID |
[20] | Middleton EM, Teramura AH (1993). The role of flavonol glycoside and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiology, 103, 475-480. |
[21] |
Oxborough K, Baker NR (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components: calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynthesis Research, 54, 135-142.
DOI URL |
[22] |
Paul ND, Gwynn-Jones D (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology and Evolution, 18, 48-55.
DOI URL |
[23] |
Quick WP, Stitt M (1989). An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 977, 287-296.
DOI URL |
[24] | Shi SB (师生波), Ben GY (贲桂英), Han F (韩发) (1999). Analysis of the solar UV-B radiation and plant UV-B- absorbing compounds in different regions. Acta Phytoecologica Sinica (植物生态学报), 23, 529-535. (in Chinese with English abstract) |
[25] |
Shi SB (师生波), Shang YX (尚艳霞), Zhu PJ (朱鹏锦), Yang L (杨莉) (2011a). Effects of short term enhanced UV-B radiation on the PSII photochemical efficiency of alpine plant Saussurea superba. Chinese Journal of Applied Ecology (应用生态学报), 22, 1147-1154. (in Chinese with English abstract)
URL PMID |
[26] |
Shi SB (师生波), Shang YX (尚艳霞), Zhu PJ (朱鹏锦), Yang L (杨莉), Zhang B (张波) (2011b). Effects of solar UV-B radiation on the efficiency of PSII photochemistry in the alpine plant Saussurea superba under different weather conditions in the Qinghai-Tibet Plateau of China. Chinese Journal of Plant Ecology (植物生态学报), 35, 741-750. (in Chinese with English abstract)
DOI URL |
[27] | Shi SB (师生波), Shang YX (尚艳霞), Zhu PJ (朱鹏锦), Zhang DG (张德罡) (2010). Effect of enhanced UV-B radiation on photosynthesis and photosynthetic pigments in alpine plants Saussurea superba. Acta Agrectir Sinica (草地学报), 18, 607-614. (in Chinese with English abstract) |
[28] |
Shi SB (师生波), Shang YX (尚艳霞), Zhu PJ (朱鹏锦), Zhang DG (张德罡) (2011 c). Effects of UV-B exclusion on photosynthetic physiology in alpine plant Saussurea superba. Chinese Journal of Plant Ecology (植物生态学报), 35, 176-186. (in Chinese with English abstract)
DOI URL |
[29] |
Shi SB, Zhu WY, Li HM, Zhou DW, Han F, Zhao XQ, Tang YH (2004). Photosynthesis of Saussurea superba and Gentiana straminea is not reduced after long-term enhancement of UV-B radiation. Environmental and Experimental Botany, 51, 75-83.
DOI URL |
[30] | Sicora C, Szilárd A, Sass L, Turcsányi E, Máté Z, Vass I (2006). UV-B and UV-A radiation effects on photosynthesis at the molecular level. In: Ghetti F, Checcucci G, Bornman JF eds. Environmental UV Radiation: Impact and Human Health and Predictive Model. Springer, the Netherlands. 121-135. |
[31] |
Šprtová M, Špunda V, Kalina J, Marek MV (2003). Photosynthetic UV-B response of beach (Fagus sylvatica L.) saplings. Photosynthetic, 41, 533-543.
DOI URL |
[32] |
van de Staaij JWM, Huijsmans R, Ernst WHO, Rozema J (1995). The effect of elevated UV-B (280-320 nm) radiation levels on Silene vulgaris: a comparison between a highland and a lowland population. Environmental Pollution, 90, 357-362.
URL PMID |
[33] | van Rensen JJS, Vredenberg WJ, Rodrigues GC (2007). Time sequence of the damage to the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence. Photosynthesis Research, 94, 219-297. |
[34] | Xu DQ (许大全) (2002). Photosynthetic Efficiency (光合作用效率). Shanghai Scientific and Technical Press, Shanghai. (in Chinese) |
[35] | Zhang SR (张守仁) (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany (植物学通报), 16, 444-448. (in Chinese with English abstract) |
[36] | Zhu GL (朱广廉), Zhong HW (钟诲文), Zhang AQ (张爱琴) (1990). The Plant Physiological Experiment (植物生理学实验). Beijing University Press, Beijing. 51-54. (in Chinese) |
[37] |
Ziska LH, Termura AH, Sullivan JH (1992). Physiological sensitivity of plants along an elevational gradient to UV-B radiation. American Journal of Botany, 79, 863-871.
DOI URL |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[6] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[7] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[8] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[9] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[10] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[11] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[12] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[13] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[14] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[15] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19