植物生态学报 ›› 2011, Vol. 35 ›› Issue (7): 741-750.DOI: 10.3724/SP.J.1258.2011.00741
所属专题: 青藏高原植物生态学:生理生态学
师生波1,*(), 尚艳霞1,2, 朱鹏锦1,2, 杨莉1,2, 张波1,3
发布日期:
2011-08-18
通讯作者:
师生波
作者简介:
*E-mail: sbshi@nwipb.cas.cnSHI Sheng-Bo1,*(), SHANG Yan-Xia1,2, ZHU Peng-Jin1,2, YANG Li1,2, ZHANG Bo1,3
Published:
2011-08-18
Contact:
SHI Sheng-Bo
摘要:
以中国科学院海北高寒草甸试验站地区的美丽风毛菊(Saussurea superba)为材料, 通过短期滤除自然光谱中紫外线B (UV-B)辐射成分的途径, 研究了UV-B辐射对叶片光系统II (PSII)光化学效率的影响。不同天气的归纳分析表明, 随可见光辐射的降低, 暗适应3 min的PSII最大光化学量子效率(F(v)/F(m))显著升高; 与此同时PSII实际光化学量子效率(ΦPSII)和光化学猝灭系数(qP)也显著升高, 非光化学猝灭系数(NPQ)则显著降低。滤除UV-B辐射后, 3种典型天气类型下的F(v)/F(m)均略有升高趋势; 且ΦPSII和qP增加, 而NPQ略有降低趋势。量子效率的相对限制(L(PFD))和PSII反应中心开放程度(qL)的进一步分析表明, UV-B辐射能显著影响辅酶A还原状态, 对高山植物美丽风毛菊的光合机构具有负影响。综上可知, 自然光中的可见光辐射是影响PSII激发能捕获效率的重要因素, PSII反应中心的光化学效率和非光化学能量耗散主要受光和有效辐射的影响; 滤除UV-B成分能减缓PSII反应中心的光抑制程度。
师生波, 尚艳霞, 朱鹏锦, 杨莉, 张波. 不同天气类型下UV-B辐射对高山植物美丽风毛菊叶片PSII光化学效率的影响分析. 植物生态学报, 2011, 35(7): 741-750. DOI: 10.3724/SP.J.1258.2011.00741
SHI Sheng-Bo, SHANG Yan-Xia, ZHU Peng-Jin, YANG Li, ZHANG Bo. Effects of solar UV-B radiation on the efficiency of PSII photochemistry in the alpine plant Saussurea superba under different weather conditions in the Qinghai-Tibet Plateau of China. Chinese Journal of Plant Ecology, 2011, 35(7): 741-750. DOI: 10.3724/SP.J.1258.2011.00741
图1 醋酸纤维素薄膜和Luminar薄膜对可见光和紫外光谱的透光性比较。
Fig. 1 Comparison of transmittance of ultraviolet and visible light radiation through cellulose diactate and Luminar film. CA, cellulose diactate film; Luminar, Mylar type film; CA-Luminar, difference of transmittance between CA and Luminar film.
图2 不同天气状况下短期滤除自然光谱中UV-B辐射处理时UV-B辐射强度和主要环境因子的变化。晴天、多云和阴天的测定时间分别为14:15、13:45和14:00, 测定日期为2009年7月23、24和26日; 晴天、多云和阴天各相应处理之间具极显著差异(p < 0.001), 图中未做标注。amb UV-B, 环境UV-B辐射; low UV-B, 滤除UV-B辐射。垂直条表示标准误差。***, p < 0.001。
Fig. 2 Changes of UV-B radiation intensities and main environmental factors during the treatment of short-term removing UV-B component from natural sunlight under different weather states. Data measured under sunny day were collected at 14:15 on July 23, 2009, cloudy day at 13:45 on July 24, 2009 and shady day at 14:00 on July 26, 2009, respectively. The extremely significant differences (p < 0.001) were exhibited among the results measured from sunny, cloudy, and shady day; and the significant mark did not shown in figures. amb UV-B, ambient UV-B radiation; low UV-B, decreased UV-B radiation; PAR, photosynthetically active radiation; RH, relative humidity of air; Tair, air temperature; UV-B, ultraviolet-B radiation. Vertical bar is SE. ***, p < 0.001.
图3 不同天气状况下短期滤除自然光谱中UV-B辐射成分对美丽风毛菊叶片PSII光化学效率的影响。各相应处理的不同天气间具极显著差异(p < 0.001), 图中未作标示。amb UV-B, 环境UV-B辐射; low UV-B, 滤除UV-B辐射。垂直条表示标准误差。*, p < 0.05; **, p < 0.01。
Fig. 3 Effects of short-term removal of UV-B component from natural sunlight on quantum efficiency of PSII photochemical in Saussurea superba under different weather states. There were extremely significant differences (p < 0.001) among different weather states and significant mark did not shown in figures. amb UV-B, ambient UV-B radiation; low UV-B, decreased UV-B radiation. F(v)/F(m), 3 min dark adapted maximum quantum efficiency of PSII photochemistry; ΦPSII, actual photochemical efficiency of PSII. Vertical bar is SE. *, p < 0.05; **, p < 0.01.
图4 不同天气状况下短期滤除自然光谱中UV-B辐射成分对美丽风毛菊叶片光化学和非光化学猝灭的影响。各相应处理的不同天气间具极显著差异(p < 0.001), 图中未作标示。amb UV-B, 环境UV-B辐射; low UV-B, 滤除UV-B辐射。垂直条表示标准误差。*, p < 0.05; **, p < 0.01。
Fig. 4 Effects of short-term removal of UV-B component from natural sunlight on coefficient of photochemical quenching (qP) and non-photochemical quenching (NPQ) in Saussurea superba under different weather states. There were extremely significant differences (p < 0.001) among different weather states and significant mark did not shown in figures. amb UV-B, ambient UV-B radiation; low UV-B, decreased UV-B radiation. Vertical bar is SE. *, p < 0.05; **, p < 0.01.
图5 不同天气状况下短期滤除自然光谱中UV-B辐射成分处理时叶片量子效率的相对限制和PSII反应中心的开放程度变化。各相应处理的不同天气间具极显著差异(p < 0.001), 图中未作标示。amb UV-B, 环境UV-B辐射; low UV-B, 滤除UV-B辐射。垂直条表示标准误差。*, p < 0.05; **, p < 0.01。
Fig. 5 Changes of relative limitation of quantum efficiency (L(PFD)) and fraction of opened PSII centers (qL) in Saussurea superba during treatment of short-terms removing UV-B radiation under different weather states. There were extremely significant differences (p < 0.001) among different weather states and significant mark did not shown in figures. amb UV-B, ambient UV-B radiation; low UV-B, decreased UV-B radiation.Vertical bar is SE. *, p < 0.05; **, p < 0.01.
[1] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI URL PMID |
[2] | Baker NR, Oxborough K (2004). Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindindjee eds. Chlorophyll A Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, the Netherlands. 65-83. |
[3] |
Bilger W, Björkman O (1990). Role of the xanthophyll cycle in protoprotection elucidated by measurements of light- induced absorbance changes, fluorescence and photosyn- thesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
URL PMID |
[4] | Björn LO (1999). Ultraviolet-B radiation, the ozone layer and ozone depletion. In: Rozema J ed. The Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems. Backhuys, Leiden, the Netherlands. 21-27. |
[5] | Björn LO, Teramura AH (1993). Simulation of daylight ultraviolet radiation and effects of ozone depiction. In: Young AR, Björn LO, Moan J, Nultsch W eds. Environmental UV Photobiology. Plenum Press, New York. 41-71. |
[6] | Caldwell MM, Ballaré CL, Bornman JF, Flint SD, Björn LO, Teramura AH, Kulandaivelu G, Tevini M (2003). Terres- trial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. In: van der Leun JC, Tang XY, Tevini M eds. Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2002 Assessment. UNEP 2002 Assessment, United Nations Environment Programme. 55-75. |
[7] | Demmig-Adams B, Adams WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264. |
[8] | Fiscus EL, Booker FL (1995). Is increased UV-B a threat to crop photosynthesis and productivity? Photosynthesis Research, 43, 81-92. |
[9] | Fiscus EL, Philbeck R, Britt AB, Booker FL (1999). Growth of Arabidopsis flavonoid mutants under solar radiation and UV filters. Environmental and Experimental Botany, 41, 231-245. |
[10] | Flint SD, Ryel RJ, Caldwell MM (2003). Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. Agricultural and Forest Meteorology, 120, 177-189. |
[11] |
Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smimoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineaux PM (2009). The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. The Plant Cell, 21, 2143-2162.
DOI URL PMID |
[12] | Gartia S, Pradhan MK, Joshi PN, Biswal UC, Biswal B (2003). UV-A irradiation guards the photosynthetic apparatus against UV-B-induced damage. Photosynthetica, 41, 545-549. |
[13] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92. |
[14] | Jansen MAK, Gaba V, Greenberg BM (1998). Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science, 3, 131-135. |
[15] | Joshi PN, Ramaswamy NK, Iyer RK, Nair JS, Pradhan MK, Gartia S, Biswal B, Biswal UC (2007). Partial protection of photosynthetic apparatus from UV-B-induced damage by UV-A radiation. Environmental and Experimental Botany, 59, 166-172. |
[16] | Lau TSL, Eno E, Goldstein G, Smith C, Christopher DA (2006). Ambient levels of UV-B in Hawaii combined with nutrient deficiency decrease photosynthesis in near- isogenic maize lines varying in leaf flavonoids: flavonoids decrease photoinhibition in plants exposed to UV-B. Photosynthetica, 44, 394-403. |
[17] | Liu Y (刘煜), Li WL (李维亮) (2001). Deepening of ozone valley over Tibetan Plateau and its possible influences. Acta Meteorologica Sinica (气象学报), 59, 97-106. (in Chinese with English abstract) |
[18] | Madronich S, McKenzie RL, Caldwell MM, Björn LO (1995). Changes in ultraviolet radiation reaching the earth’s surface. AMBIO, 24, 143-152. |
[19] | Madronich S, Tang XY (1995). Effects of increased solar ultraviolet radiation on tropospheric composition and air quality. AMBIO, 24, 188-190. |
[20] | Oxborough K, Baker NR (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components- calculation of qP and Fv'/Fm' without measuring Fo'. Photosynthesis Research, 54, 135-142. |
[21] | Pancotto VA, Sala OE, Robson TM, Caldwell MM, Scopel AL (2005). Direct and indirect effects of solar ultraviolet-B radiation on long-term decomposition. Global Change Biology, 11, 1982-1989. |
[22] | Paul ND, Gwynn-Jones D (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology and Evolution, 18, 48-55. |
[23] | Quick WP, Stitt M (1989). An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta, 977, 287-296. |
[24] | Shi SB (师生波), Ben GY (贲桂英), Han F (韩发) (1999). Analysis of the solar UV-B radiation and plant UV-B- absorbing compounds in different regions. Acta Phyto- ecologica Sinica (植物生态学报), 23, 529-535. (in Chinese with English abstract) |
[25] |
Sicora C, Máté Z, Vass I (2003). The interaction of visible and UV-B light during photodamage and repair of photosystem II. Photosynthesis Research, 75, 127-137.
DOI URL PMID |
[26] | Sicora C, Szilárd A, Sass L, Turcsányi E, Máté Z, Vass I (2006). UV-B and UV-A radiation effects on photosyn- thesis at the molecular level. In: Ghetti F, Checcucci G, Bornmann JF eds. Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models. Springer, Dordrecht, the Netherlands. 121-135. |
[27] | van der Leun JC, Tang XY, Tevini M (1995). Environmental effects of ozone depletion: 1994 assessment. AMBIO, 24, 138-142. |
[28] | van Rensen JJ, Vredenberg WJ, Rodrigues GC (2007). Time sequence damage of the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence. Photosynthesis Research, 94, 219-297. |
[29] | Wang GH, Hao ZJ, Anken RH, Lu JY, Liu YD (2010). Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients. Advances in Space Research, 45, 839-845. |
[30] | Xu DQ (许大全) (2002). Photosynthetic Efficiency (光合作用效率). Shanghai Scientific and Technical Press, Shanghai. (in Chinese) |
[31] | Zhang SR (张守仁) (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany (植物学通报), 16, 444-448. (in Chinese with English abstract) |
[32] | Zhou XJ (周秀骥), Luo C (罗超), Li WL (李维亮), Shi JE (史久恩) (1995). Changes of total ozone in whole China and its low contents center in Qing-Zang plateau regions. Chinese Science Bulletin (科学通报), 40, 1396-1398. (in Chinese with English abstract) |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[6] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[7] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[8] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[9] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[10] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[11] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[12] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[13] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[14] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[15] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19