植物生态学报 ›› 2006, Vol. 30 ›› Issue (1): 40-46.DOI: 10.17521/cjpe.2006.0006
师生波(), 李惠梅, 王学英, 岳向国, 徐文华, 陈桂琛
收稿日期:
2004-12-23
接受日期:
2005-05-23
出版日期:
2006-12-23
发布日期:
2006-01-30
作者简介:
E-mail:sbshi@mail.nwipb.ac.cn
基金资助:
SHI Sheng-Bo(), LI Hui-Mei, WANG Xue-Ying, YUE Xiang-Guo, XU Wen-Hua, CHEN Gui-Chen
Received:
2004-12-23
Accepted:
2005-05-23
Online:
2006-12-23
Published:
2006-01-30
摘要:
选用西宁地区人工栽培的高山植物唐古特大黄(Rheum tanguticum)、山莨菪(Anisodus tanguticus)和麻花艽(Gentiana straminea),比较了3种高山植物之间光合作用的光响应和CO2响应特性,叶片光合色素以及UV-B吸收物质的差异;并以低海拔植物菘蓝(Isatis indigotica)为对比,分析了高山植物与低海拔植物的差异。结果表明:与低海拔植物菘蓝相比,3种高山植物光合作用的表观量子效率(AQY)都偏低;唐古特大黄叶片的AQY、羧化效率(CE)和光呼吸速率(Rp)都很低,净光合速率(Pn)的光响应曲线在全日照光辐射范围内并没有达到完全饱和,这与单位面积叶片具有较高的光合色素以及UV-B吸收物质有关;麻花艽植物与唐古特大黄一样,具有较高的UV-B吸收物质和光合色素含量,但其Rp较高,加之Pn受气孔限制较为明显,故其光合作用的饱和光强很低,Pn相对于其它3种植物也较低;山莨菪与低海拔植物菘蓝的光合特性很相似,都具有较高的AQY和CE。这些结果表明,3种高山植物的光合特性有较大差异,但并没有一致的相对于低海拔植物的共性。4种植物Pn的胞间CO2浓度(Ci)响应曲线在CO2饱和点以后都表现为无机磷(Pi)再生限制,其Rp的变化与CO2饱和点以后的最大Pn的变化基本一致。
师生波, 李惠梅, 王学英, 岳向国, 徐文华, 陈桂琛. 青藏高原几种典型高山植物的光合特性比较. 植物生态学报, 2006, 30(1): 40-46. DOI: 10.17521/cjpe.2006.0006
SHI Sheng-Bo, LI Hui-Mei, WANG Xue-Ying, YUE Xiang-Guo, XU Wen-Hua, CHEN Gui-Chen. COMPARATIVE STUDIES OF PHOTOSYNTHETIC CHARACTERISTICS IN TYPICAL ALPINE PLANTS OF THE QINGHAI-TIBET PLATEAU. Chinese Journal of Plant Ecology, 2006, 30(1): 40-46. DOI: 10.17521/cjpe.2006.0006
表观量子效率AQY (μmol CO2·μmol-1 photon) | 光补偿点Φi (μmol photons·m-2·s-1) | 暗呼吸速率Rd (μmol CO2·m-2·s-1) | 最大净光合速率Pmax (μmol CO2·m-2·s-1) | ||||
---|---|---|---|---|---|---|---|
唐古特大黄Rheum tanguticum | 0.030 4±0.005 0a | 86.00±14.74a | -2.88±0.46a | 20.03±3.83a | |||
山茛菪Anisodus tanguticus | 0.047 4±0.001 5b | 41.31±9.89b | -2.38±0.46ab | 15.14±0.80b | |||
菘蓝Isatis indigotica | 0.051 8±0.000 9b | 48.67±4.83b | -3.01±0.12a | 15.53±1.57b | |||
麻花艽Gentiana straminea | 0.037 2±0.005 6c | 48.13±14.56b | -1.84±0.49b | 9.15±2.23c |
表1 高山植物和低海拔植物的光合作用光响应参数比较
Table 1 Comparison of photosynthetic parameters between alpine and low land species
表观量子效率AQY (μmol CO2·μmol-1 photon) | 光补偿点Φi (μmol photons·m-2·s-1) | 暗呼吸速率Rd (μmol CO2·m-2·s-1) | 最大净光合速率Pmax (μmol CO2·m-2·s-1) | ||||
---|---|---|---|---|---|---|---|
唐古特大黄Rheum tanguticum | 0.030 4±0.005 0a | 86.00±14.74a | -2.88±0.46a | 20.03±3.83a | |||
山茛菪Anisodus tanguticus | 0.047 4±0.001 5b | 41.31±9.89b | -2.38±0.46ab | 15.14±0.80b | |||
菘蓝Isatis indigotica | 0.051 8±0.000 9b | 48.67±4.83b | -3.01±0.12a | 15.53±1.57b | |||
麻花艽Gentiana straminea | 0.037 2±0.005 6c | 48.13±14.56b | -1.84±0.49b | 9.15±2.23c |
羧化效率CE (μmol·μmol-1) | 光呼吸速率Rp (μmol CO2·m-2·s-1) | CO2补偿点Γ (μmol CO2·mol-1) | |
---|---|---|---|
唐古特大黄Rdeum tanguticum | 0.045 3±0.006 6a | -2.58±0.33a | 57.30±5.69ac |
山茛菪Anisodus tanguticus | 0.111 6±0.002 6b | -4.49±0.27b | 40.18±1.48b |
菘蓝Isatis indigotica | 0.107 7±0.013 9bc | -6.00±0.75c | 55.77±1.70c |
麻花艽Gentiana Straminea | 0.090 2±0.011 9c | -6.45±0.66c | 71.63±2.55d |
表2 高山植物和低海拔植物光合作用的羧化效率、光呼吸速率和CO2补偿点比较
Table 2 Comparison in carboxylation efficiency (CE), photorespiration rate (Rp) and the CO2 compensation point (Γ) between alpine and low land species
羧化效率CE (μmol·μmol-1) | 光呼吸速率Rp (μmol CO2·m-2·s-1) | CO2补偿点Γ (μmol CO2·mol-1) | |
---|---|---|---|
唐古特大黄Rdeum tanguticum | 0.045 3±0.006 6a | -2.58±0.33a | 57.30±5.69ac |
山茛菪Anisodus tanguticus | 0.111 6±0.002 6b | -4.49±0.27b | 40.18±1.48b |
菘蓝Isatis indigotica | 0.107 7±0.013 9bc | -6.00±0.75c | 55.77±1.70c |
麻花艽Gentiana Straminea | 0.090 2±0.011 9c | -6.45±0.66c | 71.63±2.55d |
UV-B吸收物质 UV-B-absorbing compounds (A·cm-2·40 ml-1) | 叶绿素 Chlorophyll (mg·cm-2) | 类胡萝卜素 Carotenoid (mg·cm-2) | |
---|---|---|---|
唐古特大黄Rdeum tanguticum | 41.6831±5.7752ad | 0.1338±0.0136ad | 0.0652±0.0055a |
山茛菪Anisodus tanguticus | 15.4925±2.5225b | 0.0838±0.0089b | 0.0404±0.0040b |
菘蓝Isatis indigotica | 25.0854±2.3132c | 0.0417±0.0117c | 0.0177±0.0049c |
麻花艽Gentiana Straminea | 37.2295±6.9890d | 0.1294±0.0126d | 0.0576±0.0037d |
表3 高山植物和低海拔植物叶片中UV-B吸收物质、叶绿素和类胡萝卜素含量的比较
Table 3 Comparison of alpine and low land species in concentrations of UV-B-absorbing compounds, chlorophyll and carotenoid
UV-B吸收物质 UV-B-absorbing compounds (A·cm-2·40 ml-1) | 叶绿素 Chlorophyll (mg·cm-2) | 类胡萝卜素 Carotenoid (mg·cm-2) | |
---|---|---|---|
唐古特大黄Rdeum tanguticum | 41.6831±5.7752ad | 0.1338±0.0136ad | 0.0652±0.0055a |
山茛菪Anisodus tanguticus | 15.4925±2.5225b | 0.0838±0.0089b | 0.0404±0.0040b |
菘蓝Isatis indigotica | 25.0854±2.3132c | 0.0417±0.0117c | 0.0177±0.0049c |
麻花艽Gentiana Straminea | 37.2295±6.9890d | 0.1294±0.0126d | 0.0576±0.0037d |
[1] |
Arnon DI (1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiology, 24,1-15.
DOI URL PMID |
[2] | Beggs CG, Wellmann E (1994). Photocontrol of flavonoid biosynthesis. In: Kendrick RE, Kronenberg GHM eds. Photomorphogenesis in Plants Vol. 2. Kluwer Academic, Dordrecht,733-750. |
[3] | Ben GY (贲桂英), Han F (韩发), Shi SB (师生波) (1993). Studies of leaf conductance, transpiration and water potential of plants in alpine Kobresia humilis Meadow. Acta Ecologica Sinica (生态学报), 13,369-372. (in Chinese with English abstract) |
[4] | Ben GY, Lu CF, Han F, Shi SB (1992). Characteristic of the photosynthesis in alpine plants on Qinghai plateau. In: Murata N ed. Research in Photosynthesis Volume IV. Kluwer Academic Publishers,173-176. |
[5] | Cai SQ (蔡时青), Xu DQ (许大全) (2000). Relationship between the CO 2 compensation point and photorespiration in soybean leaves. Acta Phytophysiologica Sinica (植物生理学报), 26,545-550. (in Chinese with English abstract) |
[6] | Caldwell MM (1968). Solar ultraviolet radiation as an ecological factor for alpine plants. Ecological Monographs, 38,243-267. |
[7] |
Fiscus EL, Booker FL (1995). Is increased UV-B a threat to crop photosynthesis and productivity? Photosynthesis Research, 43,81-92.
DOI URL PMID |
[8] | Goldstein G, Melcher P, Heraux J, Drake DR, Giambelluca TW (1999). Photosynthetic gas exchange and temperature-induced damage in seedlings of the tropical alpine species Argyroxiphium sandwicense. Oecologia (Historical Archive), 106,298-307. |
[9] | Guo LW (郭连旺), Shen YK (沈允钢), Xu DQ (许大全), Zhang SY (张树源), Wu H (武海), Wu S (吴姝) (1995). Characteristic and photoinhibition of photosynthesis in some alpine meadow plants. In: Northwest Institute of Plateau Biology, Chinese Academy of Sciences (中国科学院西北高原生物研究所) ed. Alpine Meadow Ecosystem Fasc. 4 (高寒草甸生态系统). Science Press, Beijing,65-72. (in Chinese with English abstract) |
[10] | Larcher W (1980). Physiological Plant Ecology 2nd edn. Springer-Verlag, Berlin, Heideberg, New York. |
[11] | Lu CF (卢存福), Ben GY (贲桂英), Han F (韩发), Shi SB (师生波) (1995). A comparison studies of photosynthetic response of Kobresia humilis to different environment factors. Acta Phytoecologica Sinica (植物生态学报), 19,72-78. (in Chinese with English abstract) |
[12] | Lu CF (卢存福), Jian LC (简令成), Ben GY (贲桂英) (2000). Photosynthesis in alpine plant Lagotis brevitude and its response to freeing stress. Chinese Bulletin of Botany (植物学通报), 17,559-564. (in Chinese with English abstract) |
[13] |
Rawat AS, Purohit AN (1991). CO 2 and water vapour exchange in four alpine herbs at two altitudes and under varying light and temperature conditions. Photosynthesis Research (Historical Archive), 28,99-108.
DOI URL PMID |
[14] | Sage RF, Reid CD (1994). Photosynthetic response mechanisms to environmental change in C3 plants. In: Wilkinson RE ed. Plant Environment Interactions. Marcel Dekker, New York.413-497. |
[15] | Shi SB (师生波), Han F (韩发), Li HY (李红彦) (2001). Midday depression of photosynthesis of Gentiana straminea and Saussurea superba in alpine Kobresia humilis meadow. Acta Phytophysiologica Sinica (植物生理学报), 27,123-128. (in Chinese with English abstract) |
[16] | Shi SB (师生波), Ben GY (贲桂英), Han F (韩发) (1999). Analysis of the solar UV-B radiation and plant UV-B-absorbing compounds in different regions. Acta Phytoecologica Sinica (植物生态学报), 23,529-535. (in Chinese with English abstract) |
[17] |
Westbeek MHM, Pons TL, Cambridge ML, Atkin OK (1999). Analysis of differences in photosynthetic nitrogen use efficiency of alpine and lowland Poa species. Oecologia, 120,19-26.
URL PMID |
[18] | Wu XM (吴学明) (1997). The analysis of ultrastructure of photosynthetic membrane on Cremanthodium discoideum and Aconitum tangutcum in alpine plant. Acta Botanica Boreali-Occidentalia Sinca (西北植物学报), 17,98-102. (in Chinese with English abstract) |
[19] | Xu DQ (许大全), Shen YG (沈允钢) (2001). Limiting factors in photosynthesis. In: Yu SW (余叔文), Tang ZC (汤章城) eds. Plant Physiology and Plant Molecular Biology (植物生理和植物分子生物学) 2nd edn. Science Press, Beijing,262-276. (in Chinese) |
[20] | Xu DQ (许大全) (2002). Photosynthetic Efficiency (光合作用效率). Shanghai Scientific and Technical Publishers, Shanghai. (in Chinese) |
[21] | Zhang SY (张树源), Wu H (武海), Han F (韩发) (1995). The physiological ecology studies of plants in Qinghai plateau. IV. The net photosynthetic rate of plants in different altitude. In: Northwest Institute of Plateau Biology, Chinese Academy of Sciences (中国科学院西北高原生物研究所) ed. Alpine Meadow Ecosystem Fasc. 4 (高寒草甸生态系统), Science Press, Beijing,53-58. (in Chinese with English abstract) |
[22] | Zhu GL (朱广廉) (1990). The Plant Physiological Experiment (植物生理学实验). Peking University Press, Beijing,51-54. (in Chinese) |
[1] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[6] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[7] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[8] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[9] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[15] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19