植物生态学报 ›› 2024, Vol. 48 ›› Issue (1): 92-102.DOI: 10.17521/cjpe.2022.0510 cstr: 32100.14.cjpe.2022.0510
所属专题: 生态化学计量
韩路1, 冯宇2, 李沅楷1, 王雨晴2, 王海珍3,*()
收稿日期:
2022-12-19
接受日期:
2023-06-06
出版日期:
2024-01-20
发布日期:
2023-06-07
通讯作者:
(基金资助:
HAN Lu1, FENG Yu2, LI Yuan-Kai1, WANG Yu-Qing2, WANG Hai-Zhen3,*()
Received:
2022-12-19
Accepted:
2023-06-06
Online:
2024-01-20
Published:
2023-06-07
Supported by:
摘要:
灰胡杨(Populus pruinosa)是塔里木荒漠河岸林的关键种, 研究其生态化学计量特征及内稳性的变异格局, 对科学认识荒漠河岸林养分循环规律、植被健康状况及物种适应策略具有重要意义。该研究对塔里木河干流上游地下水埋深(GWD)梯度下灰胡杨种群进行野外调查与室内化验, 比较分析了不同GWD生境灰胡杨叶片与土壤碳(C)、氮(N)、磷(P)生态化学计量学及内稳态特征。结果表明: (1)随GWD增加, 灰胡杨叶片N、P含量降低, C含量与C:N、C:P、N:P均升高; 各指标变异系数均较低且C含量最小, 但不同GWD间差异显著; N含量与C含量、C:P, P含量与C:P、N:P呈显著负相关关系。(2)土壤C、N、P含量及其化学计量比均随GWD增加呈降低趋势, 除P含量外其他指标变异系数较高且不同GWD间差异显著, P含量与C、N含量呈显著正相关关系。(3)浅、中GWD生境大部分叶片C、N、P含量与土壤C、N、P化学计量特征相关性均不显著, 深GWD生境仅叶片P含量、N:P与土壤化学计量特征显著相关且叶片C:N, C:P均高其他2种生境, 表明叶片化学计量特征并非由土壤养分含量特征直接决定, 灰胡杨通过提高养分利用率来适应干旱逆境。(4)干旱荒漠区灰胡杨叶片与林下土壤养分含量整体偏低, 叶片N、P化学计量内稳态指数(H)表现为HN > HN:P > HP, 结合养分限制诊断指标(N:P)表明灰胡杨生长易受P限制。(5)灰胡杨通过内稳态调节来保持体内C、N含量及C:N、C:P的相对稳定状态, 以保守型防御策略适应日益旱化的贫瘠荒漠环境。(6)退化荒漠河岸林生态修复过程中应注意P的供应与活化。
韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响. 植物生态学报, 2024, 48(1): 92-102. DOI: 10.17521/cjpe.2022.0510
HAN Lu, FENG Yu, LI Yuan-Kai, WANG Yu-Qing, WANG Hai-Zhen. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China. Chinese Journal of Plant Ecology, 2024, 48(1): 92-102. DOI: 10.17521/cjpe.2022.0510
样地 Plot | 经纬度 Longitude and Latitude | 地下水埋深 Groundwater depth (m) | 密度 Density (tree·hm-2) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 土壤 Soil (1 m) | |
---|---|---|---|---|---|---|---|
电导率 Conductivity (ms·cm-1) | pH | ||||||
U1 | 80.95° E, 40.48° N | 1.5 | 578.3 | 19.74 | 8.85 | 1.16 | 8.68 |
U2 | 80.97° E, 40.50° N | 2.4 | 144.5 | 48.14 | 9.38 | 8.33 | 8.51 |
U3 | 81.15° E, 40.44° N | 3.0 | 241.6 | 29.35 | 8.29 | 5.42 | 8.67 |
U4 | 81.99° E, 40.69° N | 5.4 | 182.2 | 23.53 | 7.17 | 1.83 | 8.45 |
U5 | 80.39° E, 40.33° N | 4.8 | 272.6 | 25.57 | 8.16 | 2.95 | 8.32 |
U6 | 80.40° E, 40.33° N | 6.5 | 180.2 | 19.45 | 5.85 | 5.43 | 8.12 |
U7 | 80.41° E, 40.34° N | 8.5 | 84.4 | 19.92 | 5.27 | 4.83 | 8.24 |
表1 塔里木河干流不同生境灰胡杨种群及土壤特征
Table 1 Characteristics of Populus pruinosa population and soil in different habitats in Tarim Basin
样地 Plot | 经纬度 Longitude and Latitude | 地下水埋深 Groundwater depth (m) | 密度 Density (tree·hm-2) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 土壤 Soil (1 m) | |
---|---|---|---|---|---|---|---|
电导率 Conductivity (ms·cm-1) | pH | ||||||
U1 | 80.95° E, 40.48° N | 1.5 | 578.3 | 19.74 | 8.85 | 1.16 | 8.68 |
U2 | 80.97° E, 40.50° N | 2.4 | 144.5 | 48.14 | 9.38 | 8.33 | 8.51 |
U3 | 81.15° E, 40.44° N | 3.0 | 241.6 | 29.35 | 8.29 | 5.42 | 8.67 |
U4 | 81.99° E, 40.69° N | 5.4 | 182.2 | 23.53 | 7.17 | 1.83 | 8.45 |
U5 | 80.39° E, 40.33° N | 4.8 | 272.6 | 25.57 | 8.16 | 2.95 | 8.32 |
U6 | 80.40° E, 40.33° N | 6.5 | 180.2 | 19.45 | 5.85 | 5.43 | 8.12 |
U7 | 80.41° E, 40.34° N | 8.5 | 84.4 | 19.92 | 5.27 | 4.83 | 8.24 |
指标 Indicator | 最大值 Maximum | 最小值 Minimum | 中位数 Median | 平均值±标准差 Mean ± SD | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
土壤有机碳含量 Soil organic carbon (C) content (mg∙g-1) | 17.19 | 5.35 | 7.54 | 9.56 ± 4.26 | 44.55 |
土壤全氮含量 Total nitrogen (N) content of soil (mg∙g-1) | 1.32 | 0.47 | 0.63 | 0.81 ± 0.32 | 39.47 |
土壤全磷含量 Total phosphorus (P) content of soil (mg∙g-1) | 1.41 | 1.11 | 1.21 | 1.21 ± 0.09 | 7.16 |
土壤碳氮比 Soil C:N | 29.76 | 5.16 | 11.35 | 13.07 ± 7.23 | 55.33 |
土壤碳磷比 Soil C:P | 14.81 | 4.77 | 6.26 | 7.80 ± 3.35 | 42.90 |
土壤氮磷比 Soil N:P | 1.07 | 0.38 | 0.52 | 0.66 ± 0.24 | 35.89 |
叶片碳含量 Leaf C content (mg∙g-1) | 424.28 | 353.07 | 373.86 | 387.99 ± 32.29 | 8.32 |
叶片氮含量 Leaf N content (mg∙g-1) | 17.51 | 13.68 | 14.79 | 15.18 ± 1.55 | 10.22 |
叶片磷含量 Leaf P content (mg∙g-1) | 0.86 | 0.55 | 0.81 | 0.76 ± 0.11 | 14.32 |
叶片碳氮比 Leaf C:N | 30.37 | 20.45 | 27.56 | 26.01 ± 4.16 | 15.99 |
叶片碳磷比 Leaf C:P | 787.07 | 419.36 | 530.27 | 563.53 ± 121.26 | 21.52 |
叶片氮磷比 Leaf N:P | 31.05 | 17.99 | 19.74 | 22.03 ± 4.81 | 21.85 |
表2 塔里木河干流不同生境灰胡杨叶片与林下土壤生态化学计量指标的变异格局
Table 2 Variations of ecological stoichiometric indicator of soils and Populus pruinosa leaves in the watershed of Tarim River
指标 Indicator | 最大值 Maximum | 最小值 Minimum | 中位数 Median | 平均值±标准差 Mean ± SD | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
土壤有机碳含量 Soil organic carbon (C) content (mg∙g-1) | 17.19 | 5.35 | 7.54 | 9.56 ± 4.26 | 44.55 |
土壤全氮含量 Total nitrogen (N) content of soil (mg∙g-1) | 1.32 | 0.47 | 0.63 | 0.81 ± 0.32 | 39.47 |
土壤全磷含量 Total phosphorus (P) content of soil (mg∙g-1) | 1.41 | 1.11 | 1.21 | 1.21 ± 0.09 | 7.16 |
土壤碳氮比 Soil C:N | 29.76 | 5.16 | 11.35 | 13.07 ± 7.23 | 55.33 |
土壤碳磷比 Soil C:P | 14.81 | 4.77 | 6.26 | 7.80 ± 3.35 | 42.90 |
土壤氮磷比 Soil N:P | 1.07 | 0.38 | 0.52 | 0.66 ± 0.24 | 35.89 |
叶片碳含量 Leaf C content (mg∙g-1) | 424.28 | 353.07 | 373.86 | 387.99 ± 32.29 | 8.32 |
叶片氮含量 Leaf N content (mg∙g-1) | 17.51 | 13.68 | 14.79 | 15.18 ± 1.55 | 10.22 |
叶片磷含量 Leaf P content (mg∙g-1) | 0.86 | 0.55 | 0.81 | 0.76 ± 0.11 | 14.32 |
叶片碳氮比 Leaf C:N | 30.37 | 20.45 | 27.56 | 26.01 ± 4.16 | 15.99 |
叶片碳磷比 Leaf C:P | 787.07 | 419.36 | 530.27 | 563.53 ± 121.26 | 21.52 |
叶片氮磷比 Leaf N:P | 31.05 | 17.99 | 19.74 | 22.03 ± 4.81 | 21.85 |
图1 塔里木河干流不同地下水埋深下灰胡杨叶片和土壤碳(C)、氮(N)、磷(P)化学计量特征(平均值±标准差)。W1、W2、W3分别表示浅、中、深地下水埋深3个水平。不同小写字母表示地下水埋深3个水平间存在显著差异(p < 0.05)。
Fig. 1 Stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) of Populus pruinosa leaves along a gradient of groundwater depth in the main watershed of Tarim River (mean ± SD). W1, W2 and W3 represent shallow, middle, deep groundwater table, respectively. Different lowercase letters indicate significant differences between groundwater depths (p < 0.05).
指标 Indicator | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
C | 1 | 0.205 | 0.470* | 0.728** | 0.981** | 0.096 |
N | -0.710** | 1 | 0.591** | -0.483* | 0.082 | 0.967** |
P | -0.333 | 0.203 | 1 | -0.113 | 0.291 | 0.405 |
C:N | 0.939** | -0.904** | -0.229 | 1 | 0.823** | -0.524* |
C:P | 0.501* | -0.348 | -0.948** | 0.467* | 1 | 0.003 |
N:P | 0.044 | 0.143 | -0.885** | -0.045 | 0.851** | 1 |
表3 灰胡杨叶片、土壤碳(C)、氮(N)、磷(P)化学计量指标之间的Pearson相关系数
Table 3 Pearson’s correlation coefficients between carbon (C), nitrogen (N), phosphorus (P) stoichiometric indicator of Populus pruinosa leaves or soils
指标 Indicator | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
C | 1 | 0.205 | 0.470* | 0.728** | 0.981** | 0.096 |
N | -0.710** | 1 | 0.591** | -0.483* | 0.082 | 0.967** |
P | -0.333 | 0.203 | 1 | -0.113 | 0.291 | 0.405 |
C:N | 0.939** | -0.904** | -0.229 | 1 | 0.823** | -0.524* |
C:P | 0.501* | -0.348 | -0.948** | 0.467* | 1 | 0.003 |
N:P | 0.044 | 0.143 | -0.885** | -0.045 | 0.851** | 1 |
地下水埋深 Groundwater depth | CL | NL | PL | C:NL | C:PL | N:PL | |
---|---|---|---|---|---|---|---|
≤4 m | CS | 0.325 | -0.235 | -0.255 | 0.298 | 0.387 | 0.295 |
NS | 0.175 | -0.500 | 0.091 | 0.515 | -0.238 | -0.388 | |
PS | 0.548 | -0.814** | -0.188 | 0.897** | 0.132 | -0.144 | |
C:NS | 0.004 | 0.250 | -0.159 | -0.237 | 0.318 | 0.386 | |
C:PS | 0.191 | -0.024 | -0.220 | 0.067 | 0.374 | 0.353 | |
N:PS | -0.002 | -0.275 | 0.171 | 0.261 | -0.324 | -0.395 | |
4-6 m | CS | 0.240 | 0.891* | 0.104 | -0.624 | -0.098 | 0.003 |
NS | 0.228 | 0.703 | 0.192 | -0.500 | -0.160 | -0.073 | |
PS | 0.259 | 0.852* | 0.006 | -0.597 | 0.002 | 0.094 | |
C:NS | 0.235 | 0.934** | 0.063 | -0.679 | -0.070 | 0.033 | |
C:PS | 0.235 | 0.901* | 0.138 | -0.654 | -0.133 | -0.030 | |
N:PS | 0.090 | 0.196 | 0.428 | -0.141 | -0.368 | -0.325 | |
≥6 m | CS | 0.448 | 0.085 | 0.969** | 0.294 | -0.803 | -0.988** |
NS | 0.444 | 0.792 | 0.944** | 0.308 | -0.775 | -0.964** | |
PS | 0.220 | 0.187 | 0.826* | 0.076 | -0.764 | -0.845* | |
C:NS | -0.389 | -0.029 | -0.919** | -0.277 | 0.766 | 0.938** | |
C:PS | 0.470 | 0.068 | 0.962** | 0.318 | -0.786 | -0.981** | |
N:PS | 0.453 | 0.037 | 0.937** | 0.319 | -0.764 | -0.957** |
表4 灰胡杨叶片(L)和土壤(S)碳(C)、氮(N)、磷(P)化学计量特征的关联性
Table 4 Pearson’s correlation coefficients between carbon (C), nitrogen (N), phosphorus (P) stoichiometric characteristics of Populus pruinosa leaves (L) and soils (S) under groundwater depths
地下水埋深 Groundwater depth | CL | NL | PL | C:NL | C:PL | N:PL | |
---|---|---|---|---|---|---|---|
≤4 m | CS | 0.325 | -0.235 | -0.255 | 0.298 | 0.387 | 0.295 |
NS | 0.175 | -0.500 | 0.091 | 0.515 | -0.238 | -0.388 | |
PS | 0.548 | -0.814** | -0.188 | 0.897** | 0.132 | -0.144 | |
C:NS | 0.004 | 0.250 | -0.159 | -0.237 | 0.318 | 0.386 | |
C:PS | 0.191 | -0.024 | -0.220 | 0.067 | 0.374 | 0.353 | |
N:PS | -0.002 | -0.275 | 0.171 | 0.261 | -0.324 | -0.395 | |
4-6 m | CS | 0.240 | 0.891* | 0.104 | -0.624 | -0.098 | 0.003 |
NS | 0.228 | 0.703 | 0.192 | -0.500 | -0.160 | -0.073 | |
PS | 0.259 | 0.852* | 0.006 | -0.597 | 0.002 | 0.094 | |
C:NS | 0.235 | 0.934** | 0.063 | -0.679 | -0.070 | 0.033 | |
C:PS | 0.235 | 0.901* | 0.138 | -0.654 | -0.133 | -0.030 | |
N:PS | 0.090 | 0.196 | 0.428 | -0.141 | -0.368 | -0.325 | |
≥6 m | CS | 0.448 | 0.085 | 0.969** | 0.294 | -0.803 | -0.988** |
NS | 0.444 | 0.792 | 0.944** | 0.308 | -0.775 | -0.964** | |
PS | 0.220 | 0.187 | 0.826* | 0.076 | -0.764 | -0.845* | |
C:NS | -0.389 | -0.029 | -0.919** | -0.277 | 0.766 | 0.938** | |
C:PS | 0.470 | 0.068 | 0.962** | 0.318 | -0.786 | -0.981** | |
N:PS | 0.453 | 0.037 | 0.937** | 0.319 | -0.764 | -0.957** |
地下水埋深 Groundwater depth | 变量 Variable | H | R2 | p | 等级 Grade | |
---|---|---|---|---|---|---|
x | y | |||||
≤4 m | CS | CL | 23.419 2 | 0.132 3 | 0.335 9 | 绝对稳态 Absolute steady-state |
NS | NL | 7.812 5 | 0.247 1 | 0.173 4 | 绝对稳态 Absolute steady-state | |
PS | PL | 2.211 4 | 0.015 8 | 0.747 1 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 17.857 1 | 0.001 1 | 0.934 2 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.561 3 | 0.108 1 | 0.387 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.070 3 | 0.099 7 | 0.407 7 | 绝对稳态 Absolute steady-state | |
4-6 m | CS | CL | 18.553 2 | 0.355 8 | 0.465 5 | 绝对稳态 Absolute steady-state |
NS | NL | 3.340 1 | 0.494 1 | 0.120 3 | 绝对稳态 Absolute steady-state | |
PS | PL | 1.649 2 | 0.000 1 | 0.985 7 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 6.451 6 | 0.459 4 | 0.139 1 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.770 7 | 0.020 1 | 0.788 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.407 2 | 0.139 8 | 0.465 2 | 绝对稳态 Absolute steady-state | |
≥6 m | CS | CL | 9.009 5 | 0.207 3 | 0.364 2 | 绝对稳态 Absolute steady-state |
NS | NL | 1.941 2 | 0.794 3 | 0.017 1 | 弱敏感 Weak sensitivity | |
PS | PL | 0.167 1 | 0.659 6 | 0.049 6 | 敏感 Sensitivity | |
C:NS | C:NL | 13.175 2 | 0.087 2 | 0.567 0 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 1.643 9 | 0.659 3 | 0.049 7 | 弱敏感 Weak sensitivity | |
N:PS | N:PL | 0.264 8 | 0.876 9 | 0.005 9 | 敏感 Sensitivity |
表5 地下水埋深梯度灰胡杨叶片养分与化学计量比内稳态指数(H)
Table 5 Homeostatic indexes (H) of leaf nutrients and stoichiometry ratio along groundwater gradient
地下水埋深 Groundwater depth | 变量 Variable | H | R2 | p | 等级 Grade | |
---|---|---|---|---|---|---|
x | y | |||||
≤4 m | CS | CL | 23.419 2 | 0.132 3 | 0.335 9 | 绝对稳态 Absolute steady-state |
NS | NL | 7.812 5 | 0.247 1 | 0.173 4 | 绝对稳态 Absolute steady-state | |
PS | PL | 2.211 4 | 0.015 8 | 0.747 1 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 17.857 1 | 0.001 1 | 0.934 2 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.561 3 | 0.108 1 | 0.387 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.070 3 | 0.099 7 | 0.407 7 | 绝对稳态 Absolute steady-state | |
4-6 m | CS | CL | 18.553 2 | 0.355 8 | 0.465 5 | 绝对稳态 Absolute steady-state |
NS | NL | 3.340 1 | 0.494 1 | 0.120 3 | 绝对稳态 Absolute steady-state | |
PS | PL | 1.649 2 | 0.000 1 | 0.985 7 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 6.451 6 | 0.459 4 | 0.139 1 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.770 7 | 0.020 1 | 0.788 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.407 2 | 0.139 8 | 0.465 2 | 绝对稳态 Absolute steady-state | |
≥6 m | CS | CL | 9.009 5 | 0.207 3 | 0.364 2 | 绝对稳态 Absolute steady-state |
NS | NL | 1.941 2 | 0.794 3 | 0.017 1 | 弱敏感 Weak sensitivity | |
PS | PL | 0.167 1 | 0.659 6 | 0.049 6 | 敏感 Sensitivity | |
C:NS | C:NL | 13.175 2 | 0.087 2 | 0.567 0 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 1.643 9 | 0.659 3 | 0.049 7 | 弱敏感 Weak sensitivity | |
N:PS | N:PL | 0.264 8 | 0.876 9 | 0.005 9 | 敏感 Sensitivity |
[1] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析(第三版). 中国农业出版社, 北京.] | |
[2] | Deng J, Zhang D, Zhang W, Ren CJ, Hao WH, Liu C, Han XH, Yang GH (2019). Carbon, nitrogen, and phosphorus stoichiometry and homeostasis characteristics of leaves, soil, and microbial biomass of Robinia pseudoacacia forests in the Loess Hilly Region of China. Acta Ecologica Sinica, 39, 5527-5535. |
[邓健, 张丹, 张伟, 任成杰, 郝雯晖, 刘冲, 韩新辉, 杨改河 (2019). 黄土丘陵区刺槐叶片-土壤-微生物碳氮磷化学计量学及其稳态性特征. 生态学报, 39, 5527-5535.] | |
[3] |
Drenovsky RE, Richards JH (2006). Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs. Plant Ecology, 183, 305-314.
DOI URL |
[4] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[5] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[6] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[7] | Hai XY, Dong LB, Wang XZ, Deng L, Li JW, Liu YL, Li MY, Pan YJ, Lü WW, Shangguan ZP (2020). Effects of carbon, nitrogen, and phosphorus ecological stoichiometry characteristics on plant diversity since returning farmland to grassland on the Loess Plateau. Acta Ecologica Sinica, 40, 8570-8581. |
[海旭莹, 董凌勃, 汪晓珍, 邓蕾, 李继伟, 刘玉林, 李妙宇, 潘英杰, 吕文文, 上官周平 (2020). 黄土高原退耕还草地C、N、P生态化学计量特征对植物多样性的影响. 生态学报, 40, 8570-8581.] | |
[8] | Han L, Wang HZ, Niu JL, Wang JQ, Liu WY (2017). Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim Basin. Acta Ecologica Sinica, 37, 6836-6846. |
[韩路, 王海珍, 牛建龙, 王家强, 柳维扬 (2017). 荒漠河岸林胡杨群落特征对地下水位梯度的响应. 生态学报, 37, 6836-6846.] | |
[9] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[10] |
Han W, Fang J, Reich PB, Woodward FI, Wang Z (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI PMID |
[11] |
He J, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[12] | Hu YF, Shu XY, He JA, Zhang YL, Xiao HH, Tang XY, Gu YF, Lan T, Xia JG, Ling J, Chen GD, Wang CQ, Deng LJ, Yuan S (2018). Storage of C, N, and P affected by afforestation with Salix cupularis in an alpine semiarid desert ecosystem. Land Degradation & Development, 29, 188-198. |
[13] |
Jiang YF, Guo X (2019). Stoichiometric patterns of soil carbon, nitrogen, and phosphorus in farmland of the Poyang Lake region in Southern China. Journal of Soils and Sediments, 19, 3476-3488.
DOI |
[14] | Li CJ, Xu XW, Sun YQ, Qiu YZ, Li SY, Gao P, Zhong XB, Yan J, Wang GF (2014). Stoichiometric characteristics of C, N, P for three desert plants leaf and soil at different habitats. Arid Land Geography, 37, 996-1004. |
[李从娟, 徐新文, 孙永强, 邱永志, 李生宇, 高培, 钟显彬, 闫健, 王桂芬 (2014). 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征. 干旱区地理, 37, 996-1004.] | |
[15] | Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China. Environmental Science, 31, 1717-1725. |
[李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1717-1725.] | |
[16] | Liu SS, Xu GQ, Mi XJ, Chen TQ, Li Y (2022). Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron at the southern edge of Gurbantonggut Desert. Acta Ecologica Sinica, 42, 8881-8891. |
[刘深思, 徐贵青, 米晓军, 陈图强, 李彦 (2022). 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响. 生态学报, 42, 8881-8891.] | |
[17] | Liu YY, Luo WM, Mu GT, Wu XL, Su SC, Zhang ZM (2021). C:N:P stoichiometric characteristics of the soil-vegetation system of three rare tree species growing on Mount Fanjing in Southwest China. Global Ecology and Conservation, 32, e01893. DOI: 10.1016/j.gecco.2021.e01893. |
[18] | Luo GW, Xue C, Jiang QH, Xiao Y, Zhang FG, Guo SW, Shen QR, Ling N (2020). Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems, 5, e00162. DOI: 10.1128/mSystems.00162-20. |
[19] | Luo Y, Gong L, Zhu ML, An SQ (2017). Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River desert. Acta Ecologica Sinica, 37, 8326-8335. |
[罗艳, 贡璐, 朱美玲, 安申群 (2017). 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征. 生态学报, 37, 8326-8335.] | |
[20] |
Mou WB, Xu DH, Wang XJ, Jing WM, Zhang RY, Gu YL, Yao GQ, Qi SH, Zhang L, Gou YF (2022). Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China. Chinese Journal of Plant Ecology, 46, 1422-1431.
DOI URL |
[牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞 (2022). 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征. 植物生态学报, 46, 1422-1431.]
DOI |
|
[21] |
Ning ZY, Li YL, Yang HL, Zhang ZQ (2019). Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 43, 46-54.
DOI URL |
[宁志英, 李玉霖, 杨红玲, 张子谦 (2019). 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 43, 46-54.]
DOI |
|
[22] |
Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751.
DOI URL |
[23] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI PMID |
[24] |
Tao Y, Wu GL, Liu YB, Zhang YM (2017). Soil stoichiometry and their influencing factors in typical shrub communities in the Gurbantunggut Desert, China. Journal of Desert Research, 37, 305-314.
DOI |
[陶冶, 吴甘霖, 刘耀斌, 张元明 (2017). 古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素. 中国沙漠, 37, 305-314.]
DOI |
|
[25] |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[26] | Wang LJ, Zhou ZB, Chang Q, Fan JL, Fan WP (2018). Growth, physiological and biochemical characteristics of Populus pruinosa seedlings under salt-drought stress. Acta Ecologica Sinica, 38, 7026-7033. |
[王利界, 周智彬, 常青, 范敬龙, 范文鹏 (2018). 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响. 生态学报, 38, 7026-7033.] | |
[27] | Wang LL, Zhao GX, Li M, Zhang MT, Zhang LF, Zhang XF, An LZ, Xu SJ (2015a). C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China. PLoS ONE, 10, e0119935. DOI: 10.1371/journal.pone.0119935. |
[28] | Wang ZN, Lu JY, Yang M, Yang HM, Zhang QP (2015b). Stoichiometric characteristics of carbon, nitrogen, and phosphorus in leaves of differently aged lucerne (Medicago sativa) stands. Frontiers in Plant Science, 6, 1062. DOI:10.3389/fpls.2015.01062. |
[29] | Wei YH, Liang WZ, Han L, Wang HZ (2021). Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area. Acta Ecologica Sinica, 41, 5368-5376. |
[魏圆慧, 梁文召, 韩路, 王海珍 (2021). 胡杨叶功能性状特征及其对地下水埋深的响应. 生态学报, 41, 5368-5376.] | |
[30] | Wu XD, Ji B, He JL, Ren XB, Yu HQ, Wang ZJ (2021). The effects of precipitation gradient control on the leaf functional traits and soil nutrients of the dominant plants in a desert steppe. Acta Ecologica Sinica, 41, 2719-2727. |
[吴旭东, 季波, 何建龙, 任小玢, 俞鸿千, 王占军 (2021). 控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响. 生态学报, 41, 2719-2727.] | |
[31] |
Yang Y, Liu BR, An SS (2018). Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena, 166, 328-338.
DOI URL |
[32] |
Yu Q, Wilcox K, La Pierre K, Knapp AK, Han X, Smith MD (2015). Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96, 2328-2335.
PMID |
[33] | Zhang B, Gao X, Li L, Lu Y, Shareef M, Huang C, Liu G, Gui D, Zeng F (2018). Groundwater depth affects phosphorus but not carbon and nitrogen concentrations of a desert phreatophyte in northwest China. Frontiers in Plant Science, 9, 338. DOI: 10.3389/fpls.2018.00338. |
[34] | Zhang B, Tang G, Yin H, Zhao S, Shareef M, Liu B, Gao X, Zeng F (2021). Groundwater depths affect phosphorus and potassium resorption but not their utilization in a desert phreatophyte in its hyper-arid environment. Frontiers in Plant Science, 12, 665168. DOI:10.3389/fpls.2021.665168. |
[35] | Zhang X, Feng Q, Cao J, Biswas A, Su H, Liu W, Qin Y, Zhu M (2022). Response of leaf stoichiometry of Potentilla anserina to elevation in China’s Qilian Mountains. Frontiers in Plant Science, 13, 941357. DOI: 10.3389/fpls.2022.941357. |
[36] | Zhang YJ, Wang KQ, Song YL, Su MB, Li XL, Li XF (2020). C, N and P stoichiometric characteristics of leaf, litter and soil for subalpine forests in central Yunnan, China. Acta Ecologica Sinica, 40, 7648-7658. |
[张雨鉴, 王克勤, 宋娅丽, 苏孟白, 李晓龙, 李学峰 (2020). 滇中亚高山森林植物叶-凋落叶-土壤生态化学计量特征. 生态学报, 40, 7648-7658.] | |
[37] | Zhao R, Wang CK, Quan XK, Wang XC (2021). Ecological stoichiometric characteristics of different organs of broadleaf tree species in a temperate forest in Maoershan area, Heilongjiang Province. Scientia Silvae Sinicae, 57(2), 1-11. |
[赵瑞, 王传宽, 全先奎, 王兴昌 (2021). 黑龙江省帽儿山温带阔叶树种不同器官的生态化学计量特征. 林业科学, 57(2), 1-11.] |
[1] | 韩雨晴 熊伟 刘雅莉 张景波 辛智鸣 马迎宾 廉泓林 王思涵. 乌兰布和沙漠梭梭茎干液流对降雨脉冲的响应[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 李蓓蓓 张明军 车存伟 刘泽琛 钟晓菲 张园园 张宇. 基于稳定同位素示踪的不同覆砂厚度下枣树水分利用策略研究[J]. 植物生态学报, 2024, 48(9): 0-0. |
[3] | 陈炫铮, 朱耀军, 高居娟, 刘一凡, 王荣, 方涛, 罗芳丽, 薛伟, 于飞海. 植物-土壤反馈时空变异研究进展[J]. 植物生态学报, 2024, 48(8): 955-966. |
[4] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[5] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[6] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[7] | 王燕, 张全智, 王传宽, 郭万桂, 蔺佳玮. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943-954. |
[8] | 江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依•热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 701-718. |
[9] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[10] | 蔡慧颖, 李兰慧, 林阳, 梁亚涛, 杨光, 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(6): 780-793. |
[11] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[12] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[13] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[14] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[15] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19