Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (1): 6-19.doi: 10.17521/cjpe.2017.0266

• Research Articles • Previous Articles     Next Articles

CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau

CHAI Xi1,3,LI Ying-Nian2,DUAN Cheng1,3,ZHANG Tao4,ZONG Ning1,SHI Pei-Li1,3,*(),HE Yong-Tao1,3,ZHANG Xian-Zhou1,3   

  1. 1 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    2 Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China

    3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China

    4 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
  • Online:2018-03-08 Published:2018-01-20
  • Contact: SHI Pei-Li, ORCID: 0000-0002-1120-0003
  • Supported by:
    Supported by the National Natural Science Foundation of China(41703079);Supported by the National Natural Science Foundation of China(41271067);the National Key Research and Development Project of China(2016YFC0502001);the National Key Research and Development Project of China(2017YFA0604801)


Aims Alpine shrub-meadows and steppe-meadows are the two dominant vegetation types on the Qinghai-Xizang Plateau, and plays an important role in regional carbon cycling. However, little is known about the temporal-spatial patterns and drivers of CO2 fluxes in these two ecosystem types.

Methods Based on five years of consecutive eddy covariance measurements (2004-2008) in an eastern alpine shrub-meadow at Haibei and a hinterland alpine steppe-meadow at Damxung, we investigated the seasonal and annual variation of net ecosystem productivity (NEP) and its components, i.e. gross primary productivity (GPP) and ecosystem respiration (Re).

Important findings The CO2 fluxes (NEP, GPP and Re) were larger in the shrub-meadow than in the steppe-meadow during the study period. The shrub-meadow functioned as a carbon sink through the five years, with the mean annual NEP of 70 g C·m -2·a -1. However, the steppe-meadow acted as a carbon neutral, with mean annual NEP of -5 g C·m -2·a -1. The CO2 fluxes of steppe-meadow exhibited large variability due to the inter-annual and seasonal variations in precipitation, ranging from a carbon sink (54 g C·m -2·a -1) in 2008 to a carbon source (-88 g C·m -2·a -1) in 2006. The differences in carbon budget between the two alpine ecosystems were firstly attributed to the discrepancy of normalized difference vegetation index (NDVI) because NDVI was the direct factor regulating the seasonal and inter-annual NEP. Secondly, the shrub-meadow had higher carbon use efficiency (CUE), which was substantially determined by annual precipitation (PPT) and NDVI. Our results also indicated that the environmental drivers of CO2 fluxes were also different between these two alpine ecosystems. The structure equation model analyses showed that air temperature (Ta) determined the seasonal variations of CO2 fluxes in the shrub-meadow, with NEP and GPP being positively correlated with Ta. By contrast, the seasonal CO2 fluxes in the steppe-meadow were primarily co-regulated by soil water content (SWC) and Ta, and increased with the increase of SWC and Ta. In addition, the changes of Re during the growing season in two ecosystems were directly affected by GPP and soil temperature at 5 cm depth (Ts), while Re during non-growing season were determined by Ts. These results demonstrate that the synergy of soil water and temperature played crucial roles in determining NEP and GPP of the two alpine meadows on the Qinghai-Xizang Plateau.

Key words: Qinghai-Xizang Plateau, alpine meadow ecosystems, CO2 fluxes, temperature, soil water content, eddy covariance

Fig. 1

Energy balance during 2004-2008 at the alpine shrub-meadow (A) and steppe-meadow (B). Data are the daily sums of latent (LE) and sensible (H) heat flux and net radiation (Rn) minus soil heat storage (G), respectively. Black lines are linear fitting lines."

Fig. 2

Comparison of annual (Ann) and growing season (GS) accumulative values of CO2 fluxes (including net ecosystem productivity (NEP ), gross primary productivity (GPP) and ecosystem respiration (Re)) and environmental factors (including mean air temperature (Ta) and total precipitation (PPT )) as well as annual carbon use efficiency (CUE), Re/GPP, normalized difference vegetation index (NDVI) and coefficients of variation (CV) of these factors in the alpine shrub-meadow and steppe-meadow."

Fig. 3

Seasonal dynamic of monthly average photosynthetically active radiation (A, PAR, μmol·m-2·s-1), monthly average air temperature (B, Ta, ℃), monthly average soil temperature at a depth of 5 cm (C, Ts, ℃), monthly average vapor press deficit (D, VPD, kPa), monthly average soil water content at a depth of 5 cm (E, SWC, m3·m-3), and monthly total precipitation (E, PPT, mm), 16-day mean normalized difference vegetation index (F, NDVI) in the alpine shrub-meadow and steppe-meadow form 2004 to 2008. The black squares and histograms represent the shrub-meadow and the grey circles and histograms denote the steppe-meadow."

Fig. 4

Seasonal patterns of daily (g C·m-2·d-1) values of net ecosystem productivity (NEP, A), gross primary productivity (GPP, B) and ecosystem respiration (Re, C) for the alpine shrub-meadow and the steppe-meadow from 2004 to 2008. The black solid circles represent shrub-meadow and the grey hollow circles denote steppe-meadow."

Fig. 5

Path diagrams illustrating the effects of 16-day mean biotic and abiotic factors (air temperature, Ta, ℃; soil temperature at the depth of 5 cm, Ts, ℃; soil water content at the depth of 5 cm, SWC, m3·m-3; precipitation, PPT, mm; photosynthetically active radiation, PAR, μmol·m-2·s-1; normalized difference vegetation index, NDVI) on 16-day mean CO2 fluxes (net ecosystem productivity, NEP, g C·m-2·d-1, gross primary productivity, GPP, g C·m-2·d-1 and ecosystem respiration, Re, g C·m-2·d-1) during the growing season (A-D) and non-growing season (E, F) from 2004-2008 in the alpine shrub-meadow (A, C, E) and steppe-meadow (B, D, F). The grey solid arrows represent significantly negative correlation and the black solid arrows denote significantly positive correlation (p ≤ 0.05). The dashed arrows represent non-significantly correlation (p > 0.05). Data on the arrows are the standardized SEM coefficients. The thickness of the arrows reflects the magnitude of the standardized SEM coefficient."

Fig. 6

The correlative relationships of annual accumulative net ecosystem productivity (NEP, g C·m-2·a-1) with annual carbon use efficiency (CUE, A) and normalized difference vegetation index (NDVI, B) from 2004 to 2008. Hollow triangles represent the alpine shrub- meadow in Haibei (△) and hollow circles denote the alpine steppe-meadow in Damxung (〇). Adj.R2, adjusted coefficient of determination."

[1] Adams JM, Faure H, Fauredenard L, Mcglade JM, Woodward FI ( 1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348, 711-714.
doi: 10.1038/348711a0
[2] Adrianv R, Michaell G ( 2009). Why is marsh productivity so high? New insights from eddy covariance and biomass measurements in a Typha marsh. Agricultural and Forest Meteorology, 149, 159-168.
doi: 10.1016/j.agrformet.2008.07.010
[3] Cai JB, Liu J, Xu D, Shi BC ( 2008). Sensitivity analysis of winter wheat shortage diagnostic index based on the principle of path analysis. Journal of Hydraulic Engineering, 39(1), 83-90.
doi: 10.3321/j.issn:0559-9350.2008.01.014
[ 蔡甲冰, 刘钰, 许迪, 史宝成 ( 2008). 基于通径分析原理的冬小麦缺水诊断指标敏感性分析. 水利学报, 39(1), 83-90.
doi: 10.3321/j.issn:0559-9350.2008.01.014
[4] Cao XS ( 2011). A SEM-based study on urban community resident’s travel behavior in Guangzhou. Acta Geographica Sinica, 66, 167-177.
[ 曹小曙 ( 2011). 基于结构方程模型的广州城市社区居民出行行为. 地理学报, 66, 167-177.]
[5] Chai X, Shi PL, Zong N, Niu B, He YT, Zhang XZ ( 2017). Biophysical regulation of carbon flux in different rainfall regime in a northern Tibetan alpine meadow. Journal of Resources and Ecology, 8, 30-41.
doi: 10.5814/j.issn.1674-764x.2017.01.005
[6] Deyn GBD, Cornelissen JHC, Bardgett RD ( 2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516-531.
doi: 10.1111/j.1461-0248.2008.01164.x pmid: 18279352
[7] Du Q, Liu H ( 2013). Seven years of carbon dioxide exchange over a degraded grassland and a cropland with maize ecosystems in a semiarid area of China. Agriculture, Ecosystems and Environment, 173, 1-12.
doi: 10.1016/j.agee.2013.04.009
[8] Flanagan LB ( 2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8, 599-615.
doi: 10.1051/0004-6361:200810276
[9] Fu YL, Yu GR, Sun XM, Li YN, Wen XF, Zhang LM, Li ZQ, Zhao L, Hao YB ( 2006). Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agricultural and Forest Meteorology, 137, 234-244.
[10] Gao YX ( 1980). Principles and basis of soil classification in Tibet. Tibet Journal of Agriculture Science, 1, 18-30.
[ 高以信 ( 1980). 西藏土壤分类的原则和依据. 西藏农业科技, 1, 18-30.]
[11] Ge ZM, Kellom?ki S, Zhou X, Wang KY, Peltola H ( 2011). Evaluation of carbon exchange in a boreal coniferous stand over a 10-year period: An integrated analysis based on ecosystem model simulations and eddy covariance measurements. Agricultural and Forest Meteorology, 151, 191-203.
doi: 10.1016/j.agrformet.2010.10.003
[12] Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z Bernhofer C, Campbell CL, Cernusca A ( 2007). Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment, 121, 93-120.
doi: 10.1016/j.agee.2006.12.008
[13] Gitta L, Markus R, Dario P, Andrewd R, Almut A, Alan B, Paul S, Georg W ( 2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16, 187-208.
doi: 10.1111/j.1365-2486.2009.02041.x
[14] Gu S ( 2003). Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 108(D21), 4670. DOI: 10.1029/2003JD003584.
doi: 10.1029/2003JD003584
[15] Guo Q, Li S, Hu Z, Zhao W, Wang M ( 2015). Response of gross primary productivity to water availability at different temporal scales in a typical steppe in Inner Mongolia temperate steppe. Journal of Desert Research, 35, 616-623.
doi: 10.5254/1.3539616
[16] Hoff JHV ( 1898). über die zunehmende bedeutung der anorganischen chemie. Vortrag, gehalten auf der 70. Versammlung der gesellschaft deutscher naturforscher und rzte zu düsseldorf. Zeitschrift Für Anorganische Chemie, 18, 1-13.
doi: 10.1002/zaac.18980180102
[17] Jensen R, Herbst M, Friborg T ( 2017). Direct and indirect controls of the interannual variability in atmospheric CO2 exchange of three contrasting ecosystems in Denmark. Agricultural and Forest Meteorology, 233, 12-31.
doi: 10.1016/j.agrformet.2016.10.023
[18] Jia X, Zha TS, Wu B, Zhang YQ, Gong JN, Qin SG, Chen GP, Qian D, Kellom?ki S, Peltola H ( 2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences, 11, 4679-4693.
doi: 10.5194/bg-11-4679-2014
[19] Jongen M, Unger S, Santos PJ ( 2014). Effects of precipitation variability on carbon and water fluxes in the understorey of a nitrogen-limited montado ecosystem. Oecologia, 176, 1199-1212.
doi: 10.1007/s00442-014-3090-8 pmid: 25241297
[20] Kato T ( 2004). Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 109.
doi: 10.1029/2003JD003951
[21] Kato T, Hirota M, Tang YH, Cui XY, Li YN, Zhao XQ, Oikawa T ( 2005). Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan Plateau. Soil Biology & Biochemistry, 37, 1966-1969.
doi: 10.1016/j.soilbio.2005.02.018
[22] Kato T, Tang Y, Gu S, Cui XY, Hirota M, Du MY, Li YN, Zhao XQ, Oikawa T ( 2004). Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 124, 121-134.
doi: 10.1016/j.agrformet.2003.12.008
[23] Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK ( 2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
doi: 10.1126/science.1076347 pmid: 12481139
[24] Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G ( 2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16, 187-208.
doi: 10.1111/j.1365-2486.2009.02041.x
[25] Li D ( 2005). A primary study on CO2 emission from Alpine Potentilla fruticosa scrub meadow ecosystem. Acta Agrestia Sinica, 13(2), 4-9.
doi: 10.3969/j.issn.1007-0435.2005.02.013
[ 李东 ( 2005). 海北高寒灌丛草甸生态系统CO2释放的初步研究. 草业科学, 13(2), 4-9.]
doi: 10.3969/j.issn.1007-0435.2005.02.013
[26] Li HQ, Zhang FW, Li YN, Wang JB, Zhang LM, Zhao L, Cao GM, Zhao XQ, Du MY ( 2016). Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 228, 95-103.
doi: 10.1016/j.agrformet.2016.06.020
[27] Li YN ( 2006). Seasonal variation of net ecosystem CO2 exchange and its environmental controlling mechanisms of Potentilla fruticosa meadows in the Qinghai-Xizang Plateau. Science in China Series. D Earth Sciences, 36(A01), 163-173.
[ 李英年 ( 2006). 青藏高原金露梅灌丛草甸净生态系统CO2交换量的季节变异及其环境控制机制. 中国科学D辑地球科学, 36(A01), 163-173.]
[28] Liu R, Li Y, Wang QX, Xu H, Zheng XJ ( 2011). Seasonal and annual variations of carbon dioxide fluxes in desert ecosystem. Journal of Desert Research, 31(1), 108-114.
[ 刘冉, 李彦, 王勤学, 许皓, 郑新军 ( 2011). 盐生荒漠生态系统二氧化碳通量的年内、年际变异特征. 中国沙漠, 31(1), 108-114.]
[29] Liu R, Pan LP, Jenerette GD, Wang QX, Cieraad E, Li Y ( 2012). High efficiency in water use and carbon gain in a wet year for a desert halophyte community. Agricultural and Forest Meteorology, 162, 127-135.
doi: 10.1016/j.agrformet.2012.04.015
[30] Lu WZ, Xiao JG, Liu F, Zhang Y, Liu F, Lin GH ( 2017). Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data. Global Change Biology, 23, 1180-1198.
doi: 10.1111/gcb.13424 pmid: 27400026
[31] Lu YZ ( 1982). The draft of the soil classification in the Xizang. Chinese Journal of Soil Science, ( 5), 1-4.
[ 卢耀曾 ( 1982). 《西藏土壤分类》草案. 土壤通报, ( 5), 1-4.]
[32] Ma WL, Shi PL, Li WH, He YT, Zhang XZ ( 2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China Life Science, 53, 1142-1151.
doi: 10.1007/s11427-010-4054-9
[33] Meyers TP ( 2001). A comparison of summertime water and CO2 fluxes over rangeland for well-watered and drought conditions. Agricultural and Forest Meteorology, 106, 205-214.
doi: 10.1016/S0168-1923(00)00213-6
[34] Nagler PL, Cleverly J, Glenn E, Lampkin D, Huete A, Wan ZG, Shen ZC, Chai SY ( 2005). Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment, 94, 17-30.
doi: 10.1016/j.rse.2004.08.009
[35] Peichl M, Leahy P, Kiely G ( 2010). Six-year stable annual uptake of carbon dioxide in intensively managed humid temperate grassland. Ecosystems, 14, 112-126.
doi: 10.1007/s10021-010-9398-2
[36] Piao SL, Tan K, Nan HJ, Ciais P, Fang JY, Wang T, Vuichard N, Zhu B ( 2012). Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai- Xizang grasslands over the past five decades. Global and Planetary Change, 98- 99, 73-80.
doi: 10.1016/j.gloplacha.2012.08.009
[37] Polley HW, Emmerich W, Bradford JA, Sims PL, Johnson DA, Saliendra NZ, Svejcar T, Angell R, Frank AB, Phillips RL ( 2010). Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States. Global Change Biology, 16, 990-1002.
doi: 10.1111/j.1365-2486.2009.01966.x
[38] Polley HW, Mielnick PC, Dugas WA, Johnson HB, Sanabria J ( 2006). Increasing CO2 from subambient to elevated concentrations increases grassland respiration per unit of net carbon fixation. Global Change Biology, 12, 1390-1399.
doi: 10.1111/j.1365-2486.2006.01187.x
[39] Ruimy A, Jarvis PG, Baldocchi DD, Saugier B ( 1995). CO2 fluxes over plant canopies and solar radiation: A review. Advances in Ecological Research, 26, 1-68.
doi: 10.1016/S0065-2504(08)60063-X
[40] Ryan EM, Ogle K, Zelikova TJ, LeCain DR, Williams DG, Morgan JA, Pendall E ( 2015). Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming. Global Change Biology, 21, 2588-2602.
doi: 10.1111/gcb.12910 pmid: 25711935
[41] Saito M, Kato T, Tang Y ( 2009). Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 15, 221-228.
doi: 10.1111/j.1365-2486.2008.01713.x
[42] Shi PL, Sun XM, Xu LL, Zhang XZ, He YT, Zhang DQ, Yu GR ( 2006). Net ecosystem CO2 exchange and controlling factors in a steppe— Kobresia meadow on the Tibetan Plateau. Science in China Series D: Earth Sciences, 49, 207-218.
[43] Street L, Shaver G, Williams M, Wijk MTV ( 2007). What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? Journal of Ecology, 95, 139-150.
doi: 10.1111/j.1365-2745.2006.01187.x
[44] Suyker AE ( 2003). Interannual variability in NEE of a native tallgrass prairie. Global Change Biology, 9, 255-265.
[45] Wan S, Xia J, Liu W, Niu S ( 2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700-2710.
doi: 10.1890/08-2026.1 pmid: 19886480
[46] Wang YF, Cui XY, Hao YB, Mei XR, Yu GR, Huang XZ, Kang XM, Zhou XQ ( 2011). The fluxes of CO2 from grazed and fenced temperate steppe during two drought years on the Inner Mongolia Plateau, China. Science of The Total Environment, 410- 411, 182-190.
doi: 10.1016/j.scitotenv.2011.09.067 pmid: 22024234
[47] Wang YS , Chu, CJ ( 2011). A brief introduction of structural equation model and its application in ecology. Chinese Journal of Plant Ecology, 35, 337-344.
doi: 10.3724/SP.J.1258.2011.00337
[ 王酉石, 储诚进 ( 2011). 结构方程模型及其在生态学中的应用. 植物生态学报, 35, 337-344.]
doi: 10.3724/SP.J.1258.2011.00337
[48] Wolf S, Eugster W, Potvin C, Potvin C, Buchmann N ( 2011). Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama. Agricultural and Forest Meteorology, 151, 1139-1151.
doi: 10.1016/j.agrformet.2011.04.002
[49] Xie ZL ( 1996). Analysis of the problem in path. System Sciences and Comprehensive Studies in Agriculture, 12(3), 161-167.
[ 谢仲伦 ( 1996). 相关性通径分析问题剖析. 农业系统科学与综合研究, 12(3), 161-167.]
[50] Xu L, Baldocchi DD ( 2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 123, 79-96.
doi: 10.1016/j.agrformet.2003.10.004
[51] Xu X, Shi Z, Li DJ, Zhou XH, Sherry RA, Luo YQ ( 2015). Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Global Change Biology, 21, 3846-3853.
doi: 10.1111/gcb.12940 pmid: 25846478
[52] Yang FL, Zhou GS, Hunt JE, Zhang F ( 2011). Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China. Agriculture, Ecosystems and Environment, 142, 318-328.
doi: 10.1016/j.agee.2011.05.032
[53] Yashiro Y ( 2010). The role of shrub ( Potentilla fruticosa) on ecosystem CO2 fluxes in an alpine shrub meadow. Journal of Plant Ecology, 3, 89-97.
[54] Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W ( 2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810.
doi: 10.1111/gcb.12079 pmid: 23504837
[55] Yuan W, Luo Y, Richardson AD, Oren R, Luyssaert S, Janssens IA, Ceulemans R, Zhou XH, Gruenwald T, Aubinet M, Berhofer C, Baldocchi DD, Chen J, Dunn AL, Deforest JL, Dragoni D, Goldstein AH, Moors E, Munger JW, Monson RK, Suyker AE, Star G, Scott RL, Tenhunen J, Verma SB, Vesala T, Wofsy SC ( 2009). Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 15, 2905-2920.
doi: 10.1111/j.1365-2486.2009.01870.x
[56] Zhao GS, Shi PL, Zong N, He YT, Zhang XZ, He HL, Zhang J ( 2017). Declining precipitation enhances the effect of warming on phenological variation in a semiarid Tibetan meadow steppe. Journal of Resources and Ecology, 8, 50-56.
doi: 10.5814/j.issn.1674-764x.2017.01.007
[57] Zhao L ( 2006). Relations between carbon dioxide fluxes and environmental factors of Kobresia humilis meadows and Potentilla fruticosa meadows. Acta Botanica Boreali- Occidentalia Sinica, 26, 133-142.
doi: 10.3321/j.issn:1000-4025.2006.01.024
[ 赵亮 ( 2006). 青藏高原矮嵩草草甸和金露梅灌丛草甸CO2通量变化与环境因子的关系. 西北植物学报, 26, 133-142.]
doi: 10.3321/j.issn:1000-4025.2006.01.024
[58] Zhao L, Li YN, Gu S, Zhao XQ, Xu SX, Yu GR ( 2005). Carbon dioxide exchange between the atmosphere and an alpine shrubland meadow during the growing season on the Qinghai-Tibetan Plateau. Journal of Integrative Plant Biology, 47, 271-282.
doi: 10.1111/j.1744-7909.2005.00066.x
[59] Zhou X, Wan S, Luo Y ( 2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775.
doi: 10.1111/j.1365-2486.2007.01333.x
[1] . Eddy covariance technique and its applications in flux observations of terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[2] ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21.
[3] Yang Xiaoqing,Huang Xiaoqin,Han Xiaoyang,Liu Tengfei,Yue Xiaowei,Yi Ran. Effect of Exogenous Substances on Cold Tolerance and Key Sucrose Metabolic Gene Expression in Camellia sinensis [J]. Chin Bull Bot, 2020, 55(1): 21-30.
[4] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[5] Sun Lulong,Duan Qiuyan,Zhai Heng,Du Yuanpeng. Analysis of Temperature and Light Factors during Frost Events and Establishing Conditions for Simulated Frost [J]. Chin Bull Bot, 2019, 54(2): 237-244.
[6] LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164.
[7] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
[8] WANG Jing-Xu, HUANG Hua-Guo, LIN Qi-Nan, WANG Bing, HUANG Kan. Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale [J]. Chin J Plant Ecol, 2019, 43(11): 959-968.
[9] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[10] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[11] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[12] Chen Jianquan, Cheng Chen, Zhang Mengtian, Zhang Xiangqian, Zhang Yao, Wang Aiying, Zhu Jianbo. Cold-tolerance Analysis of Tobacco Plants Transformed with Saussurea involucrata SiSAD and Arabidopsis thaliana AtFAB2 Gene [J]. Chin Bull Bot, 2018, 53(5): 603-611.
[13] Zhang Ping, Hao Xiuying, Yu Ruifeng, Zhou Hongmei, Zhu Jianjun. A Tentative Method for Monitoring the Dynamic Features of Transpiration Regulation in Ferula krylovii Leaves [J]. Chin Bull Bot, 2018, 53(3): 353-363.
[14] WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plan Ecolo, 2018, 42(3): 382-396.
[15] LI Yong-Qiang, DONG Zhi, DING Chen-Xi, WANG Ya-Mei, JIA Ji-Wen, ZHANG Jia-Nan, JIAO Shu-Ying. Carbon stock and seasonal dynamics of carbon flux in warm-temperature tussock ecosystem in Shandong Province, China [J]. Chin J Plan Ecolo, 2018, 42(3): 277-287.
Full text



[1] Xiling Dai;Jianguo Cao;Quanxi Wang* . Formation and Development of Sporoderm of Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae)[J]. Chin Bull Bot, 2008, 25(01): 72 -79 .
[2] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[3] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[4] Xing Xue-rong Lu Chun-sheng Guo Da-li. Effect of Oraganic Acid to Nitrate Reductase and Nitrite Reductase Activity in the Vegetables[J]. Chin Bull Bot, 1995, 12(专辑2): 156 -162 .
[5] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[6] CHEN Fa-Ju;YANG Ying-Gen;ZHAO De-Xiu;GUI Yao-Lin and GUO Zhong-Chen. Advances in Studies of Species Habitats Distribution and Chemical Composition of Snow Lotuses(Saussurea) in China[J]. Chin Bull Bot, 1999, 16(05): 561 -566 .
[7] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[8] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .