植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 1015-1027.DOI: 10.17521/cjpe.2016.0048
所属专题: 青藏高原植物生态学:群落生态学
李春丽1,2, 李奇1, 赵亮1, 赵新全1,,A;*
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
赵新全
基金资助:
Chun-Li LI1,2, Qi LI1, Liang ZHAO1, Xin-Quan ZHAO1,*
Online:
2016-10-10
Published:
2016-11-02
Contact:
Xin-Quan ZHAO
摘要:
植物群落生物量反映了植被的初级生产能力, 是陆地生态系统碳(C)输入的最主要来源, 往往受到自然界中氮(N)、磷(P)元素供应的限制。该试验以青藏高原环青海湖地区的高寒草原为研究对象, 探讨了天然草地和退耕恢复草地植被群落生物量对N (10 g·m-2)、P (5 g·m-2)养分添加的响应。N、P添加显著增加了天然草地禾草的生物量, 进而促使地上总生物量显著提高。退耕恢复草地禾草和杂类草的生物量对N添加均有一致的正响应, 从而促使地上总生物量显著增加174%, 群落地上和地下总生物量显著增加34%; 而P添加对恢复草地生物量各项参数均无显著影响。回归分析显示: 天然草地植物群落地上生物量随土壤中NO3--N含量的增加而增加(p < 0.05), 退耕恢复草地植被地上、地下和总生物量均与土壤NO3--N含量显著正相关(p < 0.01), 说明环湖地区高寒草原植物生长主要受N供应的限制, P的限制作用随土地利用方式的转变和群落演替阶段的不同而变化; 相比天然草地, 恢复草地在现阶段植被初级生产力受N的限制作用更强烈, 土壤中可利用N含量是限制其植被自然恢复和重建的关键因子。
李春丽, 李奇, 赵亮, 赵新全. 环青海湖地区天然草地和退耕恢复草地植物群落生物量对氮、磷添加的响应. 植物生态学报, 2016, 40(10): 1015-1027. DOI: 10.17521/cjpe.2016.0048
Chun-Li LI, Qi LI, Liang ZHAO, Xin-Quan ZHAO. Responses of plant community biomass to nitrogen and phosphorus additions in natural and restored grasslands around Qinghai Lake Basin. Chinese Journal of Plant Ecology, 2016, 40(10): 1015-1027. DOI: 10.17521/cjpe.2016.0048
土壤深度 Soil depth (cm) | 草地类型 Grassland type | pH | 容重 Bulk density (g·m-3) | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|
0-10 | NG | 8.02 ± 0.03 | 0.73 ± 0.02 | 54.84 ± 1.52 | 5.76 ± 0.09 | 0.74 ± 0.02 |
RG | 8.34 ± 0.01 | 0.75 ± 0.02 | 31.74 ± 0.95 | 2.94 ± 0.06 | 0.80 ± 0.02 | |
10-20 | NG | 8.33 ± 0.03 | 0.80 ± 0.05 | 41.04 ± 1.19 | 4.27 ± 0.15 | 0.71 ± 0.01 |
RG | 8.51 ± 0.02 | 0.85 ± 0.05 | 26.23 ± 0.61 | 2.82 ± 0.07 | 0.61 ± 0.02 | |
20-30 | NG | 8.42 ± 0.02 | 0.85 ± 0.03 | 29.44 ± 1.54 | 3.06 ± 0.13 | 0.62 ± 0.04 |
RG | 8.65 ± 0.02 | 1.07 ± 0.04 | 24.21 ± 1.59 | 2.18 ± 0.08 | 0.63 ± 0.03 |
表1 环青海湖地区土壤理化性质(平均值±标准误差, n = 6)
Table 1 Chemical and physical properties of the soil around Qinghai Lake Basin (mean ± SE, n = 6)
土壤深度 Soil depth (cm) | 草地类型 Grassland type | pH | 容重 Bulk density (g·m-3) | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|
0-10 | NG | 8.02 ± 0.03 | 0.73 ± 0.02 | 54.84 ± 1.52 | 5.76 ± 0.09 | 0.74 ± 0.02 |
RG | 8.34 ± 0.01 | 0.75 ± 0.02 | 31.74 ± 0.95 | 2.94 ± 0.06 | 0.80 ± 0.02 | |
10-20 | NG | 8.33 ± 0.03 | 0.80 ± 0.05 | 41.04 ± 1.19 | 4.27 ± 0.15 | 0.71 ± 0.01 |
RG | 8.51 ± 0.02 | 0.85 ± 0.05 | 26.23 ± 0.61 | 2.82 ± 0.07 | 0.61 ± 0.02 | |
20-30 | NG | 8.42 ± 0.02 | 0.85 ± 0.03 | 29.44 ± 1.54 | 3.06 ± 0.13 | 0.62 ± 0.04 |
RG | 8.65 ± 0.02 | 1.07 ± 0.04 | 24.21 ± 1.59 | 2.18 ± 0.08 | 0.63 ± 0.03 |
图1 N、P添加对天然草地(NG)和退耕恢复草地(RG) NO3--N (A, C)和速效磷(B, D)含量的影响(平均值±标准误差)。***, p < 0.001。
Fig. 1 Effects of nitrogen and phosphorus additions on the contents of soil NO3--N (A, C) and available phosphorus (B, D) in the natural alpine grassland (NG) and restored grassland (RG) (mean ± SE). ***, p < 0.001.
图2 N、P添加对天然草地(A)与退耕恢复草地(B)禾草和杂类草地上生物量的影响(平均值±标准误差)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Effects of nitrogen and phosphorus additions on aboveground biomass of grass and forb in the natural grassland (A) and restored grassland (B) (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
草地类型 Grassland type | 氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | |||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||||
禾草生物量 Grass biomass | NG | 25.350 | < 0.001 | 9.036 | 0.007 | 0.168 | 0.686 | |||
RG | 81.215 | < 0.001 | 0.044 | 0.836 | 0.149 | 0.704 | ||||
禾草百分比 Grass percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
杂类草生物量 Forb biomass | NG | 0.196 | 0.663 | 0.215 | 0.648 | 0.007 | 0.934 | |||
RG | 4.908 | 0.039 | 2.072 | 0.165 | 2.792 | 0.110 | ||||
杂类草百分比 Forb percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
地上生物量 Aboveground biomass | NG | 28.837 | < 0.001 | 7.113 | 0.015 | 0.685 | 0.418 | |||
RG | 174.985 | < 0.001 | 0.089 | 0.769 | 0.002 | 0.969 | ||||
地下生物量 Belowground biomass | NG | 0.636 | 0.435 | 0.526 | 0.477 | 0.205 | 0.655 | |||
RG | 1.282 | 0.271 | 0.000 | 0.989 | 0.031 | 0.862 | ||||
总生物量 Total biomass | NG | 1.117 | 0.303 | 0.725 | 0.404 | 0.241 | 0.629 | |||
RG | 14.692 | < 0.01 | 0.004 | 0.953 | 0.038 | 0.847 |
表2 氮、磷添加对群落生物量(g·m-2·a-1)和不同功能群植物比例(%)影响的双因素方差分析
Table 2 Two-way ANOVA of the effects of nitrogen and phosphorous additions on plant community biomass and percentage contribution of different functional groups
草地类型 Grassland type | 氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | |||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||||
禾草生物量 Grass biomass | NG | 25.350 | < 0.001 | 9.036 | 0.007 | 0.168 | 0.686 | |||
RG | 81.215 | < 0.001 | 0.044 | 0.836 | 0.149 | 0.704 | ||||
禾草百分比 Grass percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
杂类草生物量 Forb biomass | NG | 0.196 | 0.663 | 0.215 | 0.648 | 0.007 | 0.934 | |||
RG | 4.908 | 0.039 | 2.072 | 0.165 | 2.792 | 0.110 | ||||
杂类草百分比 Forb percentage | NG | 3.080 | 0.095 | 2.339 | 0.142 | 0.001 | 0.978 | |||
RG | 1.098 | 0.307 | 0.665 | 0.424 | 0.999 | 0.329 | ||||
地上生物量 Aboveground biomass | NG | 28.837 | < 0.001 | 7.113 | 0.015 | 0.685 | 0.418 | |||
RG | 174.985 | < 0.001 | 0.089 | 0.769 | 0.002 | 0.969 | ||||
地下生物量 Belowground biomass | NG | 0.636 | 0.435 | 0.526 | 0.477 | 0.205 | 0.655 | |||
RG | 1.282 | 0.271 | 0.000 | 0.989 | 0.031 | 0.862 | ||||
总生物量 Total biomass | NG | 1.117 | 0.303 | 0.725 | 0.404 | 0.241 | 0.629 | |||
RG | 14.692 | < 0.01 | 0.004 | 0.953 | 0.038 | 0.847 |
图3 N、P添加对天然草地地上生物量(A)和N添加对退耕恢复草地地上生物量(AGB)和总生物量(TB) (B)的影响(平均值±标准误差)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3 Effects of nitrogen and phosphorus additions on aboveground biomass in the natural grassland (A), and effects of nitrogen addition on aboveground biomass (AGB) and total biomass (TB) (B) in the restored grassland (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图4 天然草地(NG)与退耕恢复草地(RG)禾草生物量(A)、杂类草生物量(B)、地上生物量(C)、地下生物量(D)和总生物量(C, D)在对照和N添加处理下的比较(平均值±标准误差)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 4 Comparisons of grass biomass (A), forb biomass (B), aboveground biomass (C), belowground biomass (D) and total biomass (C, D) between natural grassland (NG) and restored grassland (RG) under control and N addition treatments (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图5 天然草地地上生物量、禾草生物量与土壤NO3--N (A, C)和速效磷(B, D)含量的关系。
Fig. 5 Relationships between plant biomass and soil NO3--N (A, C), plant biomass and soil available phosphorus (B, D) in the natural grassland.
[1] | Ågren GI (2004). The C:N:P stoichiometry of autotrophs— Theory and observations.Ecology Letters, 7, 185-191. |
[2] | Ågren GI, Wetterstedt JÅ, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960. |
[3] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grassland.Global Change Biology, 16, 358-372. |
[4] | Bassin S, Schalajda J, Vogel A, Suter M (2012). Different types of sub-alpine grassland respond similarly to elevated nitrogen deposition in terms of productivity and sedge abundance.Journal of Vegetation Science, 23, 1024-1034. |
[5] | Best EP, Jacobs F (2001). Production, nutrient availability, and elemental balances of two meadows affected by different fertilization and water table regimes in The Netherlands.Plant Ecology, 155, 61-73. |
[6] | Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, Cadotte M, Chu CJ, Cleland EE, Crawley MJ, Daleo P, Damschen EI, Davies KF, DeCrappeo NM, Du GZ, Firn J, Hautier Y, Heckman RW, Hector A, HilleRisLambers J, Iribarne O, Klein JA, Knops JMH, La Pierre KJ, Leakey ADB, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Mortensen B, O’Halloran LR, Orrock JL, Pascual J, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Williams RJ, Wragg PD, Wright JP, Yang LH (2014a). Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508, 517. |
[7] | Borer ET, Seabloom EW, Mitchell CE, Cronin JP (2014b). Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland.Oikos, 123, 214-224. |
[8] | Bowman WD, Theodose TA, Schardt JC, Conant RT (1993). Constraints of nutrient availability on primary production in two alpine tundra communities.Ecology, 74, 2085-2097. |
[9] | Bracken MES, Hillebrand H, Borer ET, Seabloom EW, Cebrian J, Cleland EE, Elser JJ, Gruner DS, Harpole WS, Ngai JT (2015). Signatures of nutrient limitation and co-limitation: Responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions.Oikos, 124, 113-121. |
[10] | Carlsson G, Huss-Danell K (2003). Nitrogen fixation in perennial forage legumes in the field.Plant and Soil, 253, 353-372. |
[11] | Chapin FS III, Matson PA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer-Verlag, New York. |
[12] | Che DR (1990). Effects of phosphorus and nitrogen on cultivated grass yield Qinghai alpine grassland.Chinese Qinghai Journal of Animal and Veterinary Science, 1, 1-6.(in Chinese). [车敦仁 (1990). 青海高寒牧区栽培禾草施磷施氮的增产效应. 青海兽医畜牧杂志,1, 1-6.] |
[13] | Chen DD, Li Q, Zou XY, Zhao XQ, Xu SX, Cai H, Zou JR, Zhao L (2014). How did soil organic carbon and total nitrogen change after “Grain for Green” in the Qinghai-Lake farm?Acta Agretia Sinca, 22, 469-474.(in Chinese with English abstract) [陈懂懂, 李奇, 邹小艳, 赵新全, 徐世晓, 蔡海, 邹婧汝, 赵亮 (2014). 青海湖农场退耕还林草后的土壤碳氮变化. 草地学报,22, 469-474.] |
[14] | Chen Q, Hooper DU, Lin S (2011). Shifts in species composi- tion constrain restoration of over grazed grassland using nitrogen fertilization in Inner Mongolian steppe, China.PLOS ONE, 6, 1-10. |
[15] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters, 10, 1135-1142. |
[16] | Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley Y, Chu CJ, Cleland EE, Collins SL, Davies KF, Du GZ, Feng XH, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schutz M, Stevens CJ, Wedin DA, Yang LH (2015). Grassland productivity limited by multiple nutrients.Nature Plants, 1(7), 1-5. |
[17] | Fisher JB, Badgley G, Blyth E (2012). Global nutrient limitation in terrestrial vegetation. Global Biogeochemistry Cycles, 26, GB3007. doi: 10.1029/2011GB004252 |
[18] | Franzluebbers AJ, Stuedemann JA (2010). Surface soil changes during twelve years of pasture management in the Southern Piedmont USA.Soil Science Society of America Journal, 74, 2131-2141. |
[19] | Gao YZ, Chen Q, Lin S, Giese M, Brueck H (2011). Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China.Oecologia, 165, 855-864. |
[20] | Gibson R, Hewitt A, Sparling G, Bosch O (2000). Vegetation change and soil quality in Central Otago Tussock Grass- lands, New Zealand.Rangeland Journal, 22, 190-204. |
[21] | Gruber N, Galloway JN (2008). An Earth-system perspective of the global nitrogen cycle.Nature, 451, 293-296. |
[22] | Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ, Tietema A (1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data.Forest Ecology and Management, 101, 37-55. |
[23] | Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB (2011). Nutrient co-limitation of primary producer communities.Ecology Letters, 14, 852-862. |
[24] | Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication.Science, 324, 636-638. |
[25] | Henry HAL, Chiariello NR, Vitousek PM, Mooney HA, Field CB (2006). Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a California annual grassland.Ecosystems, 9, 1066-1075. |
[26] | Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005). Confronting a biome crisis: Global disparities of habitat loss and protection.Ecology Letters, 8, 23-29. |
[27] | Jiang J, Zong N, Song MH, Shi PL, Ma WL, Fu G, Shen ZX, Zhang XZ, Ouyang H (2013). Responses of ecosystem respiration and its components to fertilization in an alpine meadow on the Tibetan Plateau.European Journal of Soil Biology, 56, 101-106. |
[28] | LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology, 89, 371-379. |
[29] | Lee M, Manning P, Rist J, Power SA, Marsh C (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment.Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2047-2056. |
[30] | Li Q, Chen DD, Zhao L, Yang X, Xu SX, Zhao XQ (2016). More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field 13C pulse labeling.Science of Total Environment, 550, 17-26. |
[31] | Li W, Cheng JM, Yu KL, Epstein HE, Guo L, Jing GH, Zhao J, Du GZ (2015). Plant functional diversity can be independent of species diversity: Observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLOS ONE, 10(8), ED136040. doi: 10. 1371/journal.pone.0136040. |
[32] | Li YK, Zhang FW, Lin L, Wang X, Cao GM, Guo XW, Han DR, Chen GC (2012). Spatiotemporal variation in soil nu- trient of Stipa purpurea steppe fenced in the Qinghai Lake Region.Chinese Journal of Applied and Environmental Biology, 18, 23-29.(in Chinese with English abstract)[李以康, 张发伟, 林丽, 王溪, 曹广民, 郭晓伟, 韩道瑞, 陈桂琛 (2012). 青海湖区紫花针茅草原封育导致的土壤养分时空变化特征. 应用与环境生物学报,18, 23-29.] |
[33] | Liao QL, Zhang XH, Li ZP, Pan GX, Smith P, Jin Y, Wu XM (2009). Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province.Global Change Biology, 15, 861-875. |
[34] | Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research-Atmospheres, 112, D22S05, doi: 10.1029/2006JD007990. |
[35] | Majdi H, Andersson P (2005). Fine root production and turn- over in a Norway spruce stand in northern Sweden: Effects of nitrogen and water manipulation.Ecosystems, 8, 191-199. |
[36] | Melillo JM, Field CB, Moldan B (2003). Interactions of the Major Biogeochemical Cycles: Global Change and Hu- man Impacts. Island Press, Washington D.C., USA. 320. |
[37] | Mooney HA, Vitousek PM, Matson PA (1987). Exchange of materials between terrestrial ecosystems and the atmosphere.Science, 238, 926-932. |
[38] | Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139. |
[39] | Newman EI (1973). Competition and diversity in herbaceous vegetation.Nature, 244, 310. |
[40] | Odum EP, Barrett GW (2005). Fundamentals of Ecology. 5th edn. Thomson Brooks/Cole, California. |
[41] | Ren J, Li XF (1992). Analysis of complex ecological system of the Qinghai Lake catchment.Journal of Lake Sciences, 4, 48-55.(in Chinese with English abstract)[任杰, 李幸福 (1992). 青海湖流域复合生态系统分析. 湖泊科学,4, 48-55.] |
[42] | Roscher C, Thein S, Schmid, Scherer-Lorenzen M (2008). Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years.Journal of Ecology, 96, 477-488. |
[43] | Schimel D, Melillo J, Tian HQ, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States.Science, 287, 2004-2006. |
[44] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle.Biogeochemistry, 48, 7-20. |
[45] | Scurlock JMO, Hall DO (1998). The global carbon sink: A grassland perspective.Global Change Biology, 8, 229-233. |
[46] | Scurlock JMO, Johnson K, Olson RJ (2002). Estimating net primary productivity from grassland biomass dynamics measurements.Global Change Biology, 8, 736-753. |
[47] | Song GH, Li LQ, Pan GX, Zhang Q (2005). Topsoil organic carbon storage of China and its loss by cultivation.Biogeochemistry, 74, 47-62. |
[48] | van Heerwaarden LM, Toet S, Aerts R (2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization.Journal of Ecology, 91, 1060-1070. |
[49] | Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource.New Phytologist, 157, 423-447. |
[50] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997). Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
[51] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea—How can it occur?Biogeochemistry, 13, 87-115. |
[52] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implica- tions, and nitrogen-phosphorus interactions.Ecological Applications, 20, 5-15. |
[53] | Wang JS, Wang ZK, Zhang XZ, Zhang YJ, Ran CQ, Zhang JL, Chen BX, Zhang BS (2015). Response of Kobresia pygm- aea and Stipa purpurea grassland communities in northern tibet to nitrogen and phosphate addition.Mountain Research and Development, 35, 78-86. |
[54] | Wei XR, Shao MG, Fu XL, Horton R, Li Y, Zhang XC (2009). Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China.Biogeochemistry, 96, 149-162. |
[55] | Weiner J (1990). Asymmetric competition in plant populations.Trends in Ecology & Evolution, 5, 360-364. |
[56] | Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition.New Phytologist, 179, 428-439. |
[57] | Xie GD, Lu CX, Xiao Y, Zheng D (2003). The economic evaluation of grassland ecosystem services in Qinghai- Tibet Plateau.Journal of Mountain Science, 21, 50-55.(in Chinese with English abstract) [谢高地, 鲁春霞, 肖玉, 郑度 (2003). 青藏高原高寒草地生态系统服务价值评估. 山地学报,21, 50-55.] |
[58] | Xu DH, Fang XW, Zhang RY, Gao TP, Bu HY, Du GZ (2015). Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow.AoB PLANTS, 7, 1-12. |
[59] | Yang LC, Liu HC, Li CB, Li F, Xu WH, Zhou GY (2015). Effects of nitrogen, phosphorus and potassium fertilizer applications on plant community structure in a degraded alpine steppe.Chinese Journal of Ecology, 34, 25-32.(in Chinese with English abstract)[杨路存, 刘何春, 李长斌, 李璠, 徐文华, 周国英 (2015). 氮磷钾不同施肥配方对退化高寒草原植物群落结构的影响. 生态学杂志,34, 25-32.] |
[60] | Yang P (2009). Climate Change and Hydrological Response in Qinghai Lake. PhD dissertaion, Lanzhou University, Lanzhou, 13-17.(in Chinese with English abstract) [杨萍 (2009). 青海湖小冰期以来的气候变化及其水文效应. 博士学位论文, 兰州大学, 兰州, 13-17.] |
[61] | Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology, 38, 159-166.(in Chinese with English abstract) [杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报,38, 159-166.] |
[62] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands.Journal of Vegetation Science, 20, 177-184. |
[63] | Yu L, Song XL, Zhao JN, Wang H, Bai L, Yang DL (2015). Responses of plant diversity and primary productivity to nutrient addition in a Stipa baicalensis grassland, China.Journal of Integrative Agriculture, 14, 2099-2108. |
[64] | Yuan ZY, Chen HYH (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation.Global Ecology and Biogeography, 18, 11-18. |
[65] | Zhang YH, Loreau M, Lu XT, He NP, Zhang GM, Han XG (2016). Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland.Global Change Biology, 22, 1445-1455. |
[66] | Zhang YH, Lu XT, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe.Global Change Biology, 20, 3520-3529. |
[67] | Zhou GY, Chen GC, Zhao YL, Wang SZ, Sun J (2005). Comparative studies on the influence of chemical fertilizer application and enclosure on alpine steppes in Qinghai Lake area II—Seasonal and annual biomass dynamics.Pratacultural Science, 22(2), 59-63(in Chinese with English abstract).[周国英, 陈桂琛, 赵以莲, 王顺忠, 孙菁 (2005). 施肥和围栏封育对青海湖地区高寒草原影响的比较研究II: 地上生物量季节动态. 草业科学,22(2), 59-63.] |
[68] | Zhou ZY, Li FR, Chen SK, Zhang HR, Li GD (2011). Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland.Plant and Soil, 341, 257-268. |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[9] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[10] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[11] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[12] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[15] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19