[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应

展开
  • 兰州大学生命科学学院草地农业生态系统国家重点实验室, 兰州 730000
    兰州大学生命科学学院草地农业生态系统国家重点实验室, 兰州
    兰州大学生命科学学院草地农业生态系统国家重点实验室, 兰州 730000 ORCID

收稿日期: 2019-07-08

  录用日期: 2019-10-02

  网络出版日期: 2019-12-22

基金资助

国家自然科学基金(31770448);国家自然科学基金(31600329);国家重点研发计划(2017YFC0504800);国家重点研发计划(2018YFD0502400)

Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau

Expand
  • State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2019-07-08

  Accepted date: 2019-10-02

  Online published: 2019-12-22

Supported by

the National Natural Science Foundation of China(31770448);the National Natural Science Foundation of China(31600329);the National Key R&D Program of China(2017YFC0504800);the National Key R&D Program of China(2018YFD0502400)

摘要

叶片性状-环境关系对于预测气候变化对植物的影响至关重要。该研究以青藏高原东缘常见阔叶木本植物为研究对象, 从47个样点采集了332个物种共666个种群的叶片, 测量了15个叶片性状, 调查了该区域木本植物叶片性状的变异程度, 并从种内和种间水平探讨了叶片性状对环境的响应及适应策略。结果表明, 反眏叶片大小的性状均具有较高的变异, 其中, 叶片面积是变异程度最大的性状。除气孔密度外, 大多数叶片性状与海拔显著相关。气候是叶片性状变异的重要驱动因素, 3.3%-29.5%的叶片性状变异由气候因子组合解释。其中, 气温对叶片性状变异解释度最高, 日照时间能解释大部分叶片性状的变异, 而降水量对叶片性状变异的解释度相对较小。与环境(海拔和气候因子)显著相关的叶片性状在种内明显少于种间水平, 可能是植物性状之间的协同变化与权衡使种内性状变异比较小, 从而减弱了种内叶片性状与环境因子的相关性。研究结果总体表明,叶片性状与木本植物对环境的适应策略密切相关, 植物通过选择小而厚的叶片和较短的叶柄以适应高海拔的 环境。

本文引用格式

杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威 . 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019 , 43(10) : 863 -876 . DOI: 10.17521/cjpe.2019.0174

Abstract

Aims Leaf trait-environment relationships are critical for predicting the effects of climate change on plants. Our objective was to reveal the response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau. Methods We measured 15 leaf traits of 332 species from 666 populations collected at 47 sites on the eastern Qinghai-Xizang Plateau. We investigated the extent of leaf trait variation in this area, and explored the response and adaptation strategies of leaf traits to environment at intra- and inter-species levels. Important findings Traits related to leaf size exhibited relatively high variation, and the leaf area was the most variant trait. Most leaf traits were significantly associated with elevation, except stomatal density. Climatic factors were important drivers of leaf trait variation because they explained 3.3%-29.5% of leaf trait variation. Meantime, temperature had the highest interpretation degree of leaf trait variation, and sunshine hours could explain the variation of most leaf traits. However, the interpretation degree of precipitation was relatively weak. In addition, the significant relationships between leaf traits and environmental (altitude and climatic) factors at intra-species level were far less than at inter-species levels. The reason for the result may be the coordinated variation and trade-off between plant traits, which make the variation of intra-species traits relatively small, and thus weaken the correlation between intra-plant leaf traits and environmental factors. Overall, leaf traits were closely related to woody plant adaptation strategies to the environment, and small, thick leaves and short petioles were selected for high-altitude plants to adapt to harsh environments such as strong winds and low temperature.

[an error occurred while processing this directive]

参考文献

[1] . Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
[2] . Al Haj Khaled R, Duru M, Theau JP, Plantureux S, Cruz P (2005). Variation in leaf traits through seasons and N-?availability levels and its consequences for ranking grassland species. Journal of Vegetation Science, 16, 391-398.
[3] . Albert CH, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W (2012). On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121, 116-126.
[4] . Barros FV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, de Lemos-Filho JP (2011). Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215.
[5] . Cornelissen JHC, Sibma F, van Logtestijn RSP, Broekman RA, Thompson K (2011). Leaf pH as a plant trait: Species- driven rather than soil-driven variation. Functional Ecology, 25, 449-455.
[6] . Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, B?nisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
[7] . Duan YF, Wang YN, Li X (2008). A simplified method for observing stomata by shaving off mesophyll cells to obtain epidermis from leaf and its application. Acta Agriculturae Boreali-Sinica, 23, 73-76.
[7] [ 段云峰, 王幼宁, 李霞 (2008). 一种获得叶片表皮观察气孔的简易方法及其应用. 华北农学报, 23, 73-76.]
[8] . Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
[9] . Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. The American Naturalist,124, 479-497.
[10] . Gratani L, Crescente MF, D’Amato V, Ricotta C, Frattaroli AR, Puglielli G (2014). Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica, 52, 386-396.
[11] . Han W, Liu C, Fan YW, Zhao N, Ye SY, Yin WL, Wang XP (2014). Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain, northeastern China. Journal of Beijing Forestry University, 36, 47-53.
[11] [ 韩威, 刘超, 樊艳文, 赵娜, 叶思阳, 尹伟伦, 王襄平 (2014). 长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征. 北京林业大学学报, 36, 47-53.]
[12] . He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
[13] . H?lscher D, Schmitt S, Kupfer K (2002). Growth and leaf traits of four broad-leaved tree species along a hillside gradient. Forstwissenschaftliches Centralblatt, 121, 229-239.
[14] . Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143.
[14] [ 胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.]
[15] . Hu YS, Yao XY, Liu YH (2015). Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains. Acta Ecologica Sinica, 35, 1480-1487.
[15] [ 胡耀升, 么旭阳, 刘艳红 (2015). 长白山森林不同演替阶段比叶面积及其影响因子. 生态学报, 35, 1480-1487.]
[16] . Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 123, 32-40.
[17] . Li DS, Shi ZM, Feng QH, Liu F (2013). Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 37, 793-802.
[17] [ 李东胜, 史作民, 冯秋红, 刘峰 (2013). 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 37, 793-802.]
[18] . Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: A review. Chinese Bulletin of Botany, 50, 159-170.
[18] [ 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 50, 159-170.]
[19] . Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98.
[19] [ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.]
[20] . Li ZJ, Tian Q, Song LL (2018). Variation and correlation of leaf traits in woody plants in the north-facing slope of Motianling, Gansu, China. Journal of Desert Research, 38, 149-156.
[20] [ 李宗杰, 田青, 宋玲玲 (2018). 甘肃省摩天岭北坡木本植物叶性状变异及关联. 中国沙漠, 38, 149-156.]
[21] . Liu CC, Li Y, Xu L, Chen Z, He NP (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9, 5803. DOI: 10.1038/s41598-019-42335-2.
[22] . McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
[23] . Niinemets ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
[24] . Niinemets ü, Afas NA, Cescatti A, Pellis A, Ceulemans R (2004). Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 24, 141-154.
[25] . Ordo?ez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149.
[26] . Plourde BT, Boukili VK, Chazdon RL (2015). Radial changes in wood specific gravity of tropical trees: Inter- and intraspecific variation during secondary succession. Functional Ecology, 29, 111-120.
[27] . Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
[28] . Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445.
[29] . Rozendaal DMA, Hurtado VH, Poorter L (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216.
[30] . Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
[31] . Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerstr?m A, Bagousse-Pinguet YL, Li YZ, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Sch?b C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) . A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
[32] . Song LL, Fan JW, Harris W, Wu SH, Zhong HP, Zhou YC, Wang N, Zhu XD (2012). Adaptive characteristics of grassland community structure and leaf traits along an altitudinal gradient on a subtropical mountain in Chongqing, China. Plant Ecology, 213, 89-101.
[33] . Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient. Progress in Geography, 30, 1431-1439.
[33] [ 宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30, 1431-1439.]
[34] . Violle C, Garnier E, Lecoeur J, Roumet C, Podeur C, Blanchard A, Navas ML (2009). Competition, traits and resource depletion in plant communities. Oecologia, 160, 747-755.
[35] . Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
[36] . Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216.
[36] [ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
[37] . Wang CY, Zhou JW, Xiao HG, Liu J, Wang L (2017). Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. Journal of Forestry Research, 28, 241-248.
[38] . Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2015). Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems. Acta Geographica Sinica, 70, 1735-1746.
[38] [ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2015). 中国森林叶片功能属性的纬度格局及其影响因素. 地理学报, 70, 1735-1746.]
[39] . Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
[40] . Wigley BJ, Slingsby JA, Díaz S, Bond WJ, Fritz H, Coetsee C (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. Journal of Ecology, 104, 1357-1369.
[41] . Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
[42] . Xiao HG, Wang CY, Liu J, Wang L, Du DL (2015). Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. Journal of Forestry Research, 26, 613-621.
[43] . Xu HJ, Yang TB, Zeng B (2012). Variation of stomatal length and stomatal density in leaves of Rhododendons with elevation. Arid Zone Research, 29, 1054-1058.
[43] [ 徐浩杰, 杨太保, 曾彪 (2012). 杜鹃叶片气孔长度和密度对海拔变化的响应. 干旱区研究, 29, 1054-1058.]
[44] . Xue ZJ, An SS, Cheng M, Wang WZ (2014). Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau. Journal of Plant Interactions, 9, 889-900.
[45] . Zhang L, Luo TX, Liu XS, Wang Y (2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. Acta Oecologica,43, 72-79.
文章导航

/

[an error occurred while processing this directive]