[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测

展开
  • 北京林业大学省部共建森林培育与保护教育部重点实验室, 北京 100083

收稿日期: 2019-07-15

  录用日期: 2019-10-29

  网络出版日期: 2020-01-03

基金资助

国家自然科学基金项目(41571332)

Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale

Expand
  • Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China

Received date: 2019-07-15

  Accepted date: 2019-10-29

  Online published: 2020-01-03

Supported by

Supported by the National Natural Science Foundation of China(41571332)

摘要

为寻求基于红外热成像技术监测云南松切梢小蠹(Tomicus yunnanensis)危害的可行性, 该研究以不同受害程度的云南松(Pinus yunnanesis)针叶为研究对象, 利用红外热成像仪观测受云南松切梢小蠹危害的云南松针叶温度的日变化规律, 并通过不同受害程度针叶的叶绿素含量、叶片含水量以及净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)等生理生化因子来分析解释针叶温度的变化。结果表明: (1)云南松针叶内叶绿素和水分含量随受害时间增加逐渐降低, 叶绿素含量下降速率比含水量下降速率快; (2)叶片的PnGsTr随受害程度增加而降低, 针叶温度与大气温度的温差(ΔTl-a)则随受害程度增加而变大; (3)不同程度受害针叶温度与健康针叶的温差(ΔT)在14:00-15:00之间达到最大, 轻度、中度和重度受害针叶ΔT分别可达0.6、0.7、2.5 ℃; (4)不同程度受害针叶的Gs、叶片含水量与ΔT呈较强的负相关关系。针叶受害后叶片内部水分失衡引起叶温变化, 利用红外热辐射对于温度变化的敏感性, 可通过红外热成像技术精确探测针叶温度的变化, 从而检测到云南松遭受云南松切梢小蠹危害的程度。

本文引用格式

王景旭, 黄华国, 林起楠, 王冰, 黄侃 . 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测[J]. 植物生态学报, 2019 , 43(11) : 959 -968 . DOI: 10.17521/cjpe.2019.0180

Abstract

Aims To explore the feasibility of thermal infrared technology for monitoring the shoot beetle damage to Yunnan pine (Pinus yunnanensis), the relationship between temperature and biochemical and/or physiological factors of healthy and damaged shoots of Yunnan pine was analyzed.Methods The temperatures were extracted with the software FLIR-TOOLS from the thermal images of damaged shoots. The temperature differences between damaged shoots and healthy shoots (ΔT) in the same thermal image were analyzed. The relationships between ΔT and physiological and biochemical parameters were used to clarify the mechanism that caused needle temperature increase with infested duration.Important findings Results indicated: (1) The chlorophyll and water content of damaged shoots decreased with the infested duration, and the chlorophyll content decreased faster than water content; (2) The net photosynthetic rate (Pn), stomata conductance (Gs) and transpiration rate (Tr) also decreased with infested duration, and the temperature difference between needle and atmosphere (ΔTl-a) increased with infested duration; (3) ΔT reached the maximum at 14:00 to 15:00; the temperature differences of lightly-infested, mid-infested and heavily-infested needles reached 0.6, 0.7 and 2.5 °C, respectively; (4) A strong negative correlation was found between ΔT and Gs, water content. Our study concluded that the water imbalance of damaged needles caused needle temperature changes. Therefore, thermal infrared technology could be applied to monitor shoot beetle damage of Yunnan pine at different stages.

[an error occurred while processing this directive]

参考文献

[1] Abdullah H, Darvishzadeh R, Skidmore AK, Groen TA, Heurich M ( 2018). European spruce bark beetle ( Ips typographus L.) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 64, 199-209.
[2] Berdugo C, Hillnhütter C, Sikaro R, Oerke EC ( 2012). A resistance bioassay for Rhizoctonia root and crown rot and damping-off caused by the anastomosis groups AG 2-2IIIB and AG 4 in sugar beet. Journal of Agricultural Science and Technology, ( A2), 294-302.
[3] Blonquist Jr JM, Norman JM, Bugbee B ( 2009). Automated measurement of canopy stomatal conductance based on infrared temperature. Agricultural and Forest Meteorology, 149, 1931-1945.
[4] Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S ( 2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany, 65, 4419-4431.
[5] Chaerle L, van Caeneghem W, Messens E, Lambers H, van Montagu M, van der Straeten D ( 1999). Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology, 17, 813-816.
[6] Cheng Q, Huang CY, Wang DW, Xiao LJ ( 2012). Correlation between cotton canopy CWSI and photosynthesis characteristics based on infrared thermography. Cotton Science, 24, 341-347.
[6] [ 程麒, 黄春燕, 王登伟, 肖莉娟 ( 2012). 基于红外热图像的棉花冠层水分胁迫指数与光合特性的关系. 棉花学报, 24, 341-347.]
[7] Choat B ( 2013). Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 33, 669-671.
[8] Coops NC, Johnson M, Wulder MA, White JC ( 2006). Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 103, 67-80.
[9] Fan L ( 2017). Multi-source Data Estimating Soil Moisture and Its Application on Forest Fire Risk Assessment. PhD dissertation, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing.
[9] [ 樊磊 ( 2017). 基于多源数据的土壤水分估算及森林火灾风险评估应用. 博士学位论文, 中国科学院遥感与数字地球研究所, 北京.]
[10] Gitelson AA, Merzlyak MN ( 1996). Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148, 494-500.
[11] He C, Liu KZ, Shu LF, Hong XF, Zhang SY ( 2018). The diagnostic methods for resurgences of smoldering fire in the forests by infrared thermal imaging. Spectroscopy and Spectral Analysis, 38, 326-332.
[11] [ 何诚, 刘柯珍, 舒立福, 洪霞芳, 张思玉 ( 2018). 基于红外热成像的林地余火死灰复燃点诊断方法研究. 光谱学与光谱分析, 38, 326-332.]
[12] Huang MF, Xing XF, Wang PJ, Wang CZ ( 2006). Comparison between three different methods of retrieving surface temperature from Landsat TM thermal infrared band. Arid Land Geography, 29, 132-137.
[12] [ 黄妙芬, 邢旭峰, 王培娟, 王昌佐 ( 2006). 利用LANDSAT/TM热红外通道反演地表温度的三种方法比较. 干旱区地理, 29, 132-137.]
[13] Jones HG ( 1998). Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany, 49, 387-398.
[14] Jones HG, Vaughan RA ( 2010). Remote Sensing of Vegetation: Principles, Techniques, and Applications. Oxford University Press, New York.
[15] Lausch A, Heurich M, Gordalla D, Dobner HJ, Gwillym-?Margianto S, Salbach C ( 2013). Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. Forest Ecology and Management, 308, 76-89.
[16] Lin QN, Huang HG, Yu LF, Wang JX ( 2018). Detection of shoot beetle stress on Yunnan pine forest using a coupled LIBERTY2-INFORM simulation. Remote Sensing, 10, 1133. DOI: 10.3390/rs10071133.
[17] Liu Y, Ding JQ, Su BQD, Liao DQ, Zhao JR, Li JS ( 2009). Identification of maize drought-tolerance at seeding stage based on leaf temperature using infrared thermography. Scientia Agricultura Sinica, 42, 2192-2201.
[17] [ 刘亚, 丁俊强, 苏巴钱德, 廖登群, 赵久然, 李建生 ( 2009). 基于远红外热成像的叶温变化与玉米苗期耐旱性的研究. 中国农业科学, 42, 192-201.]
[18] Markus I, Clement A ( 2014). Early detection of bark beetle infestation in norway spruce ( Picea abies L.) using WorldView-2 Data. Photogrammetrie Fernerkundung Geoinformation, 5, 351-367.
[19] Marx A ( 2010). Detection and classification of bark beetle infestation in pure Norway spruce stands with multi-temporal RapidEye imagery and data mining techniques. Photogrammetrie-Fernerkundung Geoinformation, 2010, 243-252.
[20] N?si R, Honkavaara E, Lyytik?inen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanp?? T, Holopainen M ( 2015). Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sensing, 7, 15467-15493.
[21] Netherer S, Matthews B, Katzensteiner K, Blackwell E, Henschke P, Hietz P, Pennerstorfer J, Rosner S, Kikuta S, Schume H, Schopf A ( 2015). Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytologist, 205, 1128-1141.
[22] Oerke EC, Fr?hling P, Steiner U ( 2011). Thermographic assessment of scab disease on apple leaves. Precision Agriculture, 12, 699-715.
[23] Sandholt I, Rasmussen K, Andersen J ( 2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213-224.
[24] Scherrer D, Bader MKF, K?rner C ( 2011). Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agricultural and Forest Meteorology, 151, 1632-1640.
[25] Seelig HD, Hoehn A, Stodieck LS, Klaus DM, Adams WW, Emery WJ ( 2008). The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. International Journal of Remote Sensing, 29, 3701-3713.
[26] Skakun RS, Wulder MA, Franklin SE ( 2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sensing of Environment, 86, 433-443.
[27] Sprintsin M, Chen JM, Czurylowicz P ( 2011). Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada. Journal of Applied Remote Sensing, 5(1), 053566. DOI: 10.1117/1.3662866.
[28] Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B ( 2008). Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agriculture, 9, 407-417.
[29] Tanner CB ( 1963). Plant temperatures. Agronomy Journal, 55, 210-211.
[30] Wulder MA, White JC, Bentz B, Alvarez MF, Coops NC ( 2006). Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment, 101, 150-166.
[31] Yu LF, Huang JX, Zong SX, Huang HG, Luo YQ ( 2018). Detecting shoot beetle damage on Yunnan pine using landsat time-series data. Forests, 9, 39. DOI: 10.3390/f9010039.
[32] Zarco-Tejada PJ, González-Dugo V, Berni JAJ ( 2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322-337.
[33] Zhang WZ, Han YD, Du HJ, Huang RD, Chen WF ( 2007). Relationship between canopy temperature and soil water content, yield components at flowering stage in rice. Chinese Journal Rice Science, 21, 99-102.
[33] [ 张文忠, 韩亚东, 杜宏娟, 黄瑞东, 陈温福 ( 2007). 水稻开花期冠层温度与土壤水分及产量结构的关系. 中国水稻科学, 21, 99-102.]
[34] Zhao TX, Guo B, An XM, Zhang WJ ( 2012). The study of stomatal conductance estimation of Populus deltoids Bartr. × Populus ussuriensis Kom. by infrared thermography. Chinese Agricultural Science Bulletin, 28, 65-70.
[34] [ 赵田欣, 郭斌, 安新民, 张文杰 ( 2012). 美洲黑杨与大青杨杂种叶片气孔导度的红外热像测量方法研究. 中国农学通报, 28, 65-70.]
[35] Zhu SP ( 2007). Research on detection Methods of Plant Disease Using Computer Vision. Master degree dissertation, Zhejiang University, Hangzhou.
[35] [ 朱圣盼 ( 2007). 基于计算机视觉技术的植物病害检测方法的研究. 硕士学位论文, 浙江大学, 杭州.]
文章导航

/

[an error occurred while processing this directive]