[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

小叶栎分布格局对末次盛冰期以来气候变化的响应

展开
  • 南京林业大学南方现代林业协同创新中心, 南京 210037;南京林业大学生物与环境学院, 南京 210037

收稿日期: 2016-01-17

  录用日期: 2016-05-09

  网络出版日期: 2016-11-25

基金资助

国家自然科学基金(31370666)、江苏高校优势学科建设工程资助项目(PAPD)和江苏省研究生培养创新工程项目(KYLX15_0922)

Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum

Expand
  • Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;and College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

Received date: 2016-01-17

  Accepted date: 2016-05-09

  Online published: 2016-11-25

摘要

小叶栎(Quercus chenii)是华东植物区系的代表树种, 具有很高的生态、经济价值。为重建冰期以来小叶栎地理分布格局的变迁历史、了解环境因子对潜在地理分布的制约机制, 为小叶栎种质资源保护和管理提供科学依据, 该研究基于55条分布记录和8个环境变量, 利用MaxEnt模型模拟小叶栎在末次盛冰期、全新世中期、现代和2070年(温室气体排放情景为典型浓度目标8.5)的潜在分布区, 利用多元环境相似度面和最不相似变量分析探讨气候变迁过程中环境异常区域和引起潜在地理分布改变的关键因素, 综合应用贡献率及置换重要值比较、Jackknife检验评估制约现代地理分布的主要因子, 采用响应曲线确定环境变量的适宜区间。研究结果表明: MaxEnt模型的预测准确度极高, 受试者工作特征曲线下的面积(AUC值)达0.9869 ± 0.0045; 现代高度适宜区在安徽南部、浙江西部、江西东北部和湖北东部; 影响小叶栎地理分布的主要气候因子为气温和降水量, 气温更重要; 最干季平均气温可能是制约小叶栎向北分布的关键因素; 末次盛冰期时, 小叶栎高度适宜区位于东海大陆架内; 全新世中期适宜分布区轮廓已与现代近似; 2070年适宜分布区向北移, 高度适宜区面积增大, 与末次盛冰期、全新世中期和现代相比, 这一时期的气候异常程度最高。气温季节变化和降水季节变化可能是引起地理分布变迁的重要气候因素。

本文引用格式

李垚, 张兴旺, 方炎明 . 小叶栎分布格局对末次盛冰期以来气候变化的响应[J]. 植物生态学报, 2016 , 40(11) : 1164 -1178 . DOI: 10.17521/cjpe.2016.0032

Abstract

Aims Quercus chenii is a representative species of the flora in East China, with high ecological and economic values. Here, we aim to simulate the changes in the distribution pattern of this tree species following the Last Glacial Maximum (LGM) and to explore how climatic factors constrain the potential distribution, so as to provide scientific basis for protection and management of the germplasm resources in Q. chenii.
Methods Based on 55 presence point records and data on eight environmental variables, we simulated the potential distribution of Q. chenii during the Last Glacial Maximum, mid-Holocene, present and the year 2070 (the scenario of greenhouse gas emission is Representative Concentration Pathway 8.5) with MaxEnt model. The novel climate area and main factors influencing the changes in distribution pattern were evaluated by multivariate environmental similarity surface analysis and the most dissimilar variable analysis. The importance of environmental variables was evaluated by percent contribution, permutation importance and Jackknife test. Response curves were used to estimate the suitable value range of each variable.
Important findings The accuracy of MaxEnt model is very high, as indicated by the value of the area under the receiver operator characteristic curve of 0.9869 ± 0.0045. The highly suitable region for the present distribution covers southern Anhui, western Zhejiang, northeastern Jiangxi and eastern Hubei. The main factors affecting the potential distribution of Q. chenii are temperature and precipitation, with the former being more important. Mean temperature of the driest quarter is likely the main factor restricting Q. chenii growing in the north. During the LGM, the East China Sea Shelf occurs as the highly suitable region for the distribution of Q. chenii. In the mid-Holocene, the outline of the suitable area for the distribution of Q. chenii is similar to the present. The potential distribution region will likely move northward and experience an area expansion under the climate condition in 2070. At that time, climate anomaly will also be most severe compared to the LGM, mid-Holocene and present. Temperature seasonality and precipitation seasonality may be the main climatic factors promoting changes in the distribution pattern of Q. chenii.

[an error occurred while processing this directive]

参考文献

[1] Bai WN, Zhang DY (2014). Current status and future directions in plant phylogeography.Chinese Bulletin of Life Sciences, 26, 125-136. (in Chinese with English abstract)[白伟宁, 张大勇 (2014). 植物亲缘地理学的研究现状与发展趋势. 生命科学, 26, 125-136.]
[2] Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012). Impacts of climate change on the future of biodiversity.Ecology Letters, 15, 365-377.
[3] Chan LM, Brown JL, Yoder AD (2011). Integrating statistical genetic and geospatial methods brings new power to phylogeography.Molecular Phylogenetics and Evolution, 59, 523-537.
[4] Chen DM, Zhang XX, Kang HZ, Sun X, Yin S, Du HM, Yamanaka N, Gapare W, Wu HX, Liu CJ (2012). Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: Multiple glacial refugia and mainland- migrated island populations. PLOS ONE, 7, e47268. doi:10.1371/journal.pone.0047268.
[5] Chen W, Wang WM, Dai XR (2009). Holocene vegetation history with implications of human impact in the Lake Chaohu area, Anhui Province, East China.Vegetation History & Archaeobotany, 18, 137-146.
[6] Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006). Novel methods improve prediction of species’ distributions from occurrence data.Ecography, 29, 129-151.
[7] Elith J, Kearney M, Phillips S (2010). The art of modelling range-shifting species.Methods in Ecology and Evolution, 1, 330-342.
[8] Fang YM, Wang T, Zhang JC (2011). Analysis of quaternary vegetation changes along the Beijing-Hangzhou Grand Canal.Journal of Nanjing Forestry University (Natural Sciences), 35, 109-115. (in Chinese with English abstract)[方炎明, 王挺, 张金池 (2011). 京杭大运河沿线第四纪植被变迁分析. 南京林业大学学报·自然科学版, 35, 109-115.]
[9] Feidas H, Kouam MK, Kantzoura V, Theodoropoulos G (2014). Global geographic distribution of Trichinella species and genotypes. Infection, Genetics and Evolution, 26, 255-266.
[10] Galletti CS, Ridder E, Falconer SE, Fall PL (2013). Maxent modeling of ancient and modern agricultural terraces in the Troodos foothills, Cyprus.Applied Geography, 39, 46-56.
[11] Hewitt GM (2004). Genetic consequences of climatic oscillations in the Quaternary.Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 183-195.
[12] Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas.International Journal of Climatology, 25, 1965-1978.
[13] Hou N, Dai Q, Ran JH, Jiao YY, Cheng Y, Zhao C (2014). A corridor design for the giant panda in the Niba Mountain of China.Chinese Journal of Applied and Environmental Biology, 20, 1039-1045. (in Chinese with English abstract)[侯宁, 戴强, 冉江洪, 焦迎迎, 程勇, 赵成 (2014). 相岭山系泥巴山大熊猫生境廊道设计. 应用与环境生物学报, 20, 1039-1045.]
[14] Hu WY, Tu BK (1992). Research on cutting propagation ofQuercus variabilis, Quercus acutissima, Quercus chenii, Castanopsis sclerophylla and Lithocarpus glaber. Hubei Forestry Science and Technology, (2), 35-36. (in Chinese)[胡婉仪, 涂炳坤 (1992). 栓皮栎、麻栎、小叶栎、苦槠、石栎扦插繁殖简报. 湖北林业科技, (2), 35-36.]
[15] Jiang Q, Piperno DR (1999). Environmental and archaeological implications of a late quaternary palynological sequence, Poyang Lake, Southern China.Quaternary Research, 52, 250-258.
[16] Jiang ZH, Zhang X, Wang J (2008). Projection of climate change in China in the 21st century by IPCC-AR4 Models.Geographical Research, 27, 787-799. (in Chinese with English abstract)[江志红, 张霞, 王冀 (2008). IPCC- AR4模式对中国21世纪气候变化的情景预估. 地理研究, 27, 787-799.]
[17] Kumar S, Stohlgren TJ (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1(4), 94-98.
[18] Li WY (1998). Vegetation and Environment of China During the Quaternary. Science Press, Beijing. (in Chinese)[李文漪 (1998). 中国第四纪植被与环境. 科学出版社, 北京.]
[19] Li Y, Zhang XW, Fang YM (2014). Predicting the impact of global warming on the geographical distribution pattern ofQuercus variabilis in China. Chinese Journal of Applied Ecology, 25, 3381-3389. (in Chinese with English abstract)[李垚, 张兴旺, 方炎明 (2014). 气候变暖对中国栓皮栎地理分布格局影响的预测. 应用生态学报, 25, 3381-3389.]
[20] Liu JL, Wang WM (2004). A discussion on the vegetation types during LGM time in South China.Quaternary Sciences, 24, 213-216. (in Chinese with English abstract)[刘金陵, 王伟铭 (2004). 关于华南地区末次冰盛期植被类型的讨论. 第四纪研究, 24, 213-216.]
[21] Liu MS, Hong BG (1999). The analysis of distribution pattern of Fagaceae in China. Journal of Nanjing Forestry University, 23(5), 18-22. (in Chinese with English abstract)[刘茂松, 洪必恭 (1999). 中国壳斗科的分布格局类型分析. 南京林业大学学报, 23(5), 18-22.]
[22] Ma SM, Nie YB, Geng QL,Wang RX (2014). Impact of climate change on suitable distribution range and spatial pattern in Amygdalu smongolica. Chinese Journal of Plant Ecology, 38, 262-269. (in Chinese with English abstract)[马松梅, 聂迎彬, 耿庆龙, 王荣学 (2014). 气候变化对蒙古扁桃适宜分布范围和空间格局的影响. 植物生态学报, 38, 262-269.]
[23] Matyukhina DS, Miquelle DG, Murzin AA, Pikunov DG, Fomenko PV, Aramilev VV, Litvinov MN, Salkina GP, Seryodkin IV, Nikolaev IG, Kostyria AV, Gaponov VV, Yudin VG, Dunishenko YM, Smirnov EN, Korkishko VG, Marino J (2015). Assessing the influence of environmental parameters on Amur tiger distribution in the Russian far east using a MaxEnt modeling approach.Achievements in the Life Sciences, 8(2), 95-100.
[24] Members of China Quaternary Pollen Data Base (2000). Pollen- based biome reconstruction at Middle Holocene (6ka BP) and Last Glacial Maximum (18 ka BP) in China.Acta Botanica Sinica, 42, 1201-1209. (in Chinese with English abstract)[中国第四纪孢粉数据库小组 (2000). 中国中全新世(6 ka BP)和末次盛冰期(18 ka BP)生物群区的重建. 植物学报, 42, 1201-1209.]
[25] Ni J, Song CY (1998). Relationship between Kira’s indexes and distribution of dominants and companions of subtropical evergreen broadleaved forest in China.Acta Ecologica Sinica, 18, 248-262. (in Chinese with English abstract)[倪健, 宋永昌 (1998). 中国亚热带常绿阔叶林优势种及常见种的分布与Kira指标的关系. 生态学报, 18, 248-262.]
[26] Padalia H, Srivastava V, Kushwaha SPS (2014). Modeling potential invasion range of alien invasive species, Hyptis suaveolens(L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics, 22, 36-43.
[27] Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions.Ecological Modelling, 190, 231-259.
[28] Qi CJ (1984). The fundamental pattern of the geographic distribution of vegetation in Hunan Province.Acta Botanica Yunnanica, 6, 403-416. (in Chinese with English abstract)[祁承经(1984). 湖南植被地理分布的基本规律. 云南植物研究, 6, 403-416.]
[29] Shi MM, Michalski SG, Erik W, Chen XY, Durka W (2014). Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia.Journal of Biogeography, 41, 1710-1720.
[30] Souza RAD, Marco PD (2014). The use of species distribution models to predict the spatial distribution of deforestation in the western Brazilian Amazon.Ecological Modelling, 291, 250-259.
[31] The Research Group of the Deciduous Oaks (1988). A synoptic summary of the researches on Chinese deciduous oaks.Journal of Beijing Forestry University, (3), 77-83. (in Chinese with English abstract)[北京林业大学落叶栎树研究组 (1988). 中国落叶栎树的综合研究. 北京林业大学学报, (3), 77-83.]
[32] Tian JQ (2007). Differentiated Distribution of Deciduous Quercus spp. and Controlling Climatic Factors in China. Master degree dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese)[田佳倩 (2007). 落叶栎树在中国的地理替代分布及其气候制约. 硕士学位论文, 中国科学院植物研究所, 北京.]
[33] Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007). A comparative evaluation of presence-only methods for modelling species distribution.Diversity and Distributions, 13, 397-405.
[34] Wang LM, Ren XW, Liu YQ (1985). Geographic distribution of deciduous oaks in China.Journal of Beijing Forestry University, (2), 57-69. (in Chinese with English abstract)[王良民, 任宪威, 刘一樵 (1985). 我国落叶栎的地理分布. 北京林业大学学报, (2), 57-69.]
[35] Wang LZ, Lang QL, Xia XH, Sun J, Gao W, Li LF (2013). Research advances in oak germplasm resources.Science of Sericulture, 39, 805-811. (in Chinese with English abstract)[王连珍, 郎庆龙, 夏兴宏, 孙娟, 高伟, 李立峰 (2013). 柞树种质资源研究进展. 蚕业科学, 39, 805-811.]
[36] Wang SM, Xia MJ (1986). Wood structure and some physical- mechanical properties of four Chinese oaks.Journal of Beijing Forestry University, (1), 53-61. (in Chinese with English abstract)[汪师孟, 夏美君 (1986). 中国栎属木材的构造及物理-力学性质(三). 北京林业大学学报, (1), 53-61.]
[37] Wang SW, Luo Y, Zhao ZC, Wen XY, Huang JB (2012). New generation of scenarios of greenhouse gas emission.Advances in Climate Change Research, 8, 305-307. (in Chinese with English abstract)[王绍武, 罗勇, 赵宗慈, 闻新宇, 黄建斌 (2012). 新一代温室气体排放情景. 气候变化研究进展, 8, 305-307.]
[38] Wang YH, Jiang WM, Comes HP, Hu FS, Qiu YX, Fu CX (2015). Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber,Tetrastigma hemsleyanum(Vitaceae): Insights into plio- pleistocene range dynamics of evergreen forest in subtropical China. New Phytologist, 206, 852-867.
[39] Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007). Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models.Biodiversity Science, 15, 365-372. (in Chinese with English abstract)[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007). ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.]
[40] Wu SX, Tian J, Yu XL, Cao FX (2011). A preliminary study of the natural forest vegetationin the limestone regions of Southern Hunan.Journal of Central South University of Forestry & Technology, 31(6), 55-64. (in Chinese with English abstract)[吴诗霞, 田径, 喻勋林, 曹福祥 (2011). 湘南石灰岩地区天然林植被初步研究. 中南林业科技大学学报, 31(6), 55-64.]
[41] Wu ZY (1979). The regionalization of Chinese flora.Acta Botanica Yunnanica, 1(1), 1-20. (in Chinese)[吴征镒 (1979). 论中国植物区系的分区问题. 云南植物研究, 1, 1-20.]
[42] Xu HY, Chang FM, Luo YL, Sun XJ (2009). Palaeoenvironmental changes from pollen record in deep sea core PC-1 from northern Okinawa Trough, East China Sea during the past 24 ka.Chinese Science Bulletin, 54, 3117-3126. (in Chinese)[徐红艳, 常凤鸣, 罗运利, 孙湘君 (2009). 冲绳海槽北部PC-1岩芯24 ka BP以来孢粉记录的古环境信息. 科学通报, 54, 3117-3126.]
[43] Yan WB, Wang Q, Wang C (2015). Evaluation of potential breeding habitat distribution with Maxent model for crested ibis in the Qinling-Bashan region.Chinese Journal of Zoology, 50, 185-193. (in Chinese with English abstract)[颜文博, 王琦, 王超 (2015). 应用Maxent模型分析秦巴地区朱鹮适宜繁殖地的分布. 动物学杂志, 50, 185-193.]
[44] Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013). Maxent modeling for predicting the potential distribution of medicinal plant,Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83-87.
[45] Yu HB, Zhang YL, Li SC, Qi W, Hu ZJ (2014). Predicting the dispersal routes of alpine plant Pedicularis longiflora(Orobanchaceae) based on GIS and species distribution models. Chinese Journal of Applied Ecology, 25, 1669-1673. (in Chinese with English abstract)[于海彬, 张镱锂, 李士成, 祁威, 胡忠俊 (2014). 基于GIS和物种分布模型的高山植物长花马先蒿迁移路线模拟. 应用生态学报, 25, 1669-1673.]
[46] Zhang L, Liu SR, Sun PS, Wang TL (2011). Comparative evaluation of multiple models of the effects of climate change on the potentialdistribution ofPinus massoniana. Chinese Journal of Plant Ecology, 35, 1091-1105. (in Chinese with English abstract)[张雷, 刘世荣, 孙鹏森, 王同立 (2011). 气候变化对马尾松潜在分布影响预估的多模型比较. 植物生态学报, 35, 1091-1105.]
[47] Zhang XA, Sui XY, Lü Z, Chen YF (2014). A prediction of the global habitat of two invasive fishes (Pseudorasbora parva and Carassius auratus) from East Asia using Maxent. Biodiversity Science, 22, 182-188. (in Chinese with English abstract)[张熙骜, 隋晓云, 吕植, 陈毅峰 (2014). 基于Maxent的两种入侵性鱼类(麦穗鱼和鲫)的全球适生区预测. 生物多样性, 22, 182-188.]
[48] Zhang XW, Li Y, Liu CY, Xia T, Zhang Q, Fang YM (2015). Phylogeography of the temperate tree species Quercus acutissima in China: Inferences from chloroplast DNA variations. Biochemical Systematics and Ecology, 63, 190-197.
[49] Zheng Z, Huang KY, Deng Y, Cao LL, Yu SH, Suc JP, Berne S, Guichard F (2013). A ~200 ka pollen record from Okinawa Trough: Paleoenvironment reconstruction of glacial- interglacial cycles.Science China: Earth Sciences, 43, 1231-1248. (in Chinese)[郑卓, 黄康有, 邓韫, 曹玲珑, 余少华, Suc JP, Berne S, Guichard F (2013). 冲绳海槽200 ka的孢粉记录及冰期-间冰期旋回古环境重建. 中国科学: 地球科学, 43, 1231-1248.]
文章导航

/

[an error occurred while processing this directive]