[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应

展开
  • 1中国林业科学研究院森林生态环境与保护研究所, 国家林业局森林生态环境重点实验室, 北京 100091
    2北京林业大学水土保持学院, 北京 100083
* 通信作者Author for correspondence (E-mail:wangyh@caf.ac.cn)

收稿日期: 2016-09-13

  录用日期: 2017-02-28

  网络出版日期: 2017-08-21

基金资助

国家重点研发计划项目(2016YFC0501603)、国家自然科学基金(41390461、41230852和41471029)和科技部科技基础性工作专项(2014FY120700)

Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China

Expand
  • 1Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forestry Ecology and Environment of State Forestry Administration, Beijing 100091, China
    and
    2College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Received date: 2016-09-13

  Accepted date: 2017-02-28

  Online published: 2017-08-21

摘要

受立地环境条件的坡位差异影响, 叶面积指数(LAI)在坡面这个基本空间单元内往往具有很大空间(坡位、坡长)和时间(季节)变化, 因而存在着坡面空间尺度效应及其季节变化, 需对此加以深入研究、准确理解和精细刻画, 从而为准确描述森林的结构、生长和生态水文功能提供科学基础。在六盘山香水河小流域选取了一个34年生华北落叶松(Larix gmelinii var. principis-rupprechtii)人工林典型坡面, 均匀划分为空间连续的16个样地, 于2015年5-10月测定了各样地林冠层LAI, 分析其坡位变化及季节差异, 并以LAI的顺坡滑动平均值在水平坡长增加100 m时的变化值(LAI/100 m)表示坡面尺度效应。研究表明, 林冠层LAI具有明显的坡位变化和尺度效应, 且月份变化明显。在5月份, LAI随离坡顶距离增加(坡位下降)而逐渐减小, 坡面尺度效应是降低0.02/100 m。在6、7和8月份, LAI均从坡顶向下逐渐增大, 在坡中部达最大后又逐渐减小, 坡面尺度效应在离开坡顶的0-244.2 m和244.2-425.1 m范围内分别为升高0.15/100 m、0.16/100 m、0.18/100 m及降低0.09/100 m、0.08/100 m、0.07/100 m; 在9和10月份, LAI均为随离坡顶距离增加而逐渐增大, 坡面尺度效应分别为升高0.03/100 m和0.09/100 m。主要影响因素的季节变化导致了上述冠层LAI的坡位差异和尺度效应的季节变化。在5月份, 主导因素是地形遮挡引起的辐射和温度的坡位差异; 在6-8月份, 主导因素是土壤含水量限制; 在9-10月份, 地形条件(海拔(坡位)、坡度)、气象条件、土壤含水量及土壤水文性质(孔隙度、持水量)等因子共同影响林冠层LAI坡位变化。对生长季各月, 拟合了不同坡位样地林冠层LAI与坡面均值的比值随水平坡长增加的非线性关系, 可藉此由任意坡位样地的LAI测定值估算坡面均值, 以节省野外测定时间和工作量。

本文引用格式

刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军 . 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017 , 41(7) : 749 -760 . DOI: 10.17521/cjpe.2016.0288

Abstract

Aims Leaf area index (LAI) is an important canopy structure parameter characterizing ecological and hydrological processes, such as forest growth, canopy interception and transpiration. Forest LAI is limited by both light and soil water availability, thus may vary with slope position and seasonality. This study is aimed at the spatiotemporal variation of LAI and its relationship with environmental variables. Methods A 34-years-old Larix gmelinii var. principis-rupprechtii planted forest situated on a typical slope located in a small watershed of Xiangshuihe within Liupan Mountains was selected for LAI observations. Sixteen plots along a 30 m wide transect along the slope was surveyed from May to October of 2015 to measure the monthly canopy LAI. Important findings It showed there was a remarkable difference of LAI among slope positions. The LAI in May decreased toward downslope direction with a scale effect of -0.02/100 m. Whereas for the period from June to August, LAI showed a nonlinear variation along slope positions: increasing from to top slope downward, reaching its maximum at the middle slope, and then decreasing to the slope foot. The scale effect of LAI was +0.15/100, +0.16/100, and +0.18/100 m in the slope range (downward positive) of 0-244.2 m, but -0.09/100, -0.08/100, and -0.07/100 m in the slope range of 244.2-425.1 m for June, July and August, respectively. The LAI increased toward downslope in September and October, with a slope scale effect of +0.03/100 m and +0.09/100 m, respectively. The seasonal variation of LAI-slope relationship showed a shift from the light and temperature control in the early growing season, to the soil water resources control in the mid growing season, and then to an integrated control of many factors in the late growing season. In the early growing season when soil moisture and nutrients were abundant, terrain shading limited the leaf growth in middle and downslope. From early to the mid growing season, the soil moisture on the slope was quickly depleted due to fast evapotranspiration and poor moisture retention of the coarse soil. On the other hand, average solar height increased, and allowed direct light radiation to penetrate to the middle then downslope. The result is that the leaf growth in the middle slope was the strongest in the mid growing season. During the late growing season, the temperature decreased fast in the mountain top to incur earlier leaf fall than the mountain foot. Thus the LAI exhibited the increasing trend toward the downslope.

[an error occurred while processing this directive]

参考文献

[1] Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010). Forest structure and live aboveground biomass variation along elevational gradient of tropical Atlantic moist forest (Brazil).Forest Ecology and Management, 260, 679-691.
[2] Asner GP, Scurlock JMO, Hicke JA (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies.Global Ecology and Biogeography, 12, 191-205.
[3] Behera SK, Srivastava P, Pathre UV, Tuli R (2010). An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 plant canopy analyzer.Agricultural and Forest Meteorology, 150, 307-311.
[4] Bequet R, Campioli M, Kint V, Muys B, Bogaert J, Ceulemans R (2012). Spatial variability of leaf area index in homogeneous forests relates to local variation in tree characteristics.Forest Science, 58, 633-640.
[5] Berterretche M, Hudak AT, Cohen WB, Maiersperger TK, Gower ST, Dungan J (2005). Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.Remote Sensing of Environment, 96, 49-61.
[6] Bulcock HH, Jewitt GPW (2010). Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception.Hydrology and Earth System Science, 14, 383-392.
[7] Burrows SN, Gower ST, Clayton MK, Mackay DS, Ahl DE, Norman JM, Diak G (2002). Application of geostatistics to characterize leaf area index (LAI) from flux tower to landscape scales using a cyclic sampling design.Ecosystems, 5, 667-679.
[8] Cox PM, Betts RA, Bunton CB, Essery PLH, Rowntree PR, Smith J (1999). The impact of new land surface physics on the GCM simulation of climate and climate sensitivity.Climate Dynamics, 15, 183-203.
[9] Deng XX, Wang YN, Wang YH, Wang ZC, Xiong W, Yu PT, Zhang T (2016). Slope variation and scale effect of tree height and DBH of Larix principis-rupprechtii plantations along a slope: A case study of Xiangshuihe watershed of Liupan Mountains.Journal of Central South University of Forestry & Technology, 36(5), 121-128. (in Chinese with English abstract)[邓秀秀, 王云霓, 王彦辉, 王忠诚, 熊伟, 于澎涛, 张桐 (2016). 华北落叶松人工林树高和胸径的坡位差异与坡面尺度效应——以六盘山香水河小流域为例. 中南林业科技大学学报, 36(5), 121-128.]
[10] Dong MY, Jiang Y, Zhang WT, Yang Y, Yang H (2011). Effect of alpine treeline conditions on the response of the stem radial variation of Picea Meyeri Rebd.Polish Journal of Ecology, 59, 729-739.
[11] Han XS, Deng LL, Wang YH, Xiong W, Li ZH, Liu Q, Wang YB, Sun H (2015). Variation of aboveground biomass of Larix principis-rupprechtii plantation along slopes in the Diediegou watershed of Liupan Mountains.Scientia Silvae Sinicae, 51(3), 132-139. (in Chinese with English abstract)[韩新生, 邓莉兰, 王彦辉, 熊伟, 刘振华, 刘千, 王艳兵, 孙浩 (2015). 六盘山叠叠沟华北落叶松人工林地上生物量的坡面变化. 林业科学, 51(3), 132-139.]
[12] Granier A, Bréda N, Biron P, Villette S (1999). A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands.Ecological Modelling, 116, 269-283.
[13] Granier A, Loustau D, Bréda N (2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index.Annals of Forest Science, 57, 755-765.
[14] Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004). Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography.Agricultural and Forest Meteorology, 121, 19-35.
[15] Körner C (1999). Alpine Plant Life: Functional and Plant Ecology of High Mountain Ecosystems. Springer-Verlag, New York.
[16] Liu YH, Wang YH, Yu PT, Xiong W, Mo F, Wang ZY (2011). Biomass and its allocation of the main vegetation types in Liupan Mountains.Forest Research, 24, 443-452. (in Chinese with English abstract)[刘延惠, 王彦辉, 于澎涛, 熊伟, 莫菲, 王占印 (2011). 六盘山主要植被类型的生物量及其分配. 林业科学研究, 24, 443-452.]
[17] Lü YL, Liu SR, Sun PS, Zhang GB, Zhang RP (2007). Seasonal and spatial variations of leaf area index of sub-alpine dark coniferous forest during growing season in western Sichuan.Scientia Silvae Sinicae, 43(8), 1-7. (in Chinese with English abstract)[吕瑜良, 刘世荣, 孙鹏森, 张国斌, 张瑞蒲 (2007). 川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征. 林业科学, 43(8), 1-7.]
[18] Maass JM, Vose JM, Swank WT, Martínez-Yrízar A (1995). Seasonal changes of leaf area index (LAI) in a tropical deciduous forest in west Mexico.Forest Ecology and Management, 74, 171-180.
[19] Nasahara KN, Muraoka H, Nagai S, Mikami H (2008). Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest.Agricultural and Forest Meteorology, 148, 1136-1146.
[20] Qiu Y, Fu BJ, Wang J, Zhang XL, Meng QH (2007). Spatiotemporal variation of soil moisture and its relation to environmental factors.Chinese Journal of Ecology, 26, 100-107. (in Chinese with English abstract)[邱扬, 傅伯杰, 王军, 张希来, 孟庆华 (2007). 土壤水分时空变异及其与环境因子的关系. 生态学杂志, 26, 100-107.]
[21] Running SW, Coughlan JC (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes.Ecological Modelling, 42, 347-367.
[22] Staelens J, de Schrijver A, Verheyen K, Verhoest NEC (2006). Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover.Journal of Hydrology, 330, 651-662.
[23] State Forest Administration (2000). Forestry Industry Standard Analytical Method of Forest Soil. Standards Press of China, Beijing. (in Chinese)[国家林业局 (2000). 中华人民共和国林业行业标准——森林土壤分析方法. 中国标准出版社, 北京.]
[24] Tong HQ, Wang YJ, Wang YH, Yu PT, Xiong W, Xu LH, Zhou Y (2011). The Spatio-temporal variation of LAI of the Larix principis-rupprechtii plantation ecosystems at Diediegou of Liupan Mountains of northwest China.Forest Research, 24(1), 13-20. (in Chinese with English abstract)[童鸿强, 王玉杰, 王彦辉, 于澎涛, 熊伟, 徐丽宏, 周杨 (2011). 六盘山叠叠沟华北落叶松人工林叶面积指数的时空变化特征. 林业科学研究, 24(1), 13-20.]
[25] Wang YN, Deng XX, Wang YH, Cao GX, Yu PT, Xiong W, Xu LH (2016). The slope scale effect of canopy LAI of Larix principis-rupprechtii plantation at the south side of Liupan Mountains.Acta Ecologica Sinica, 36, 3564-3571. (in Chinese with English abstract)[王云霓, 邓秀秀, 王彦辉, 曹恭祥, 于澎涛, 熊伟, 徐丽宏 (2016). 六盘山南坡华北落叶松人工林冠层LAI的坡面尺度效应. 生态学报, 36, 3564-3571.]
[26] Yao DD, Lei XD, Yu L, Lu J, Fu LY, Yu RG (2015). Spatial heterogeneity of leaf area index of mixed spruce-fir-deciduous stands in northeast China.Acta Ecologica Sinica, 35, 71-79. (in Chinese with English abstract)[姚丹丹, 雷相东, 余黎, 卢军, 符立勇, 俞锐刚 (2015). 云冷杉针阔混交林叶面积指数的空间异质性. 生态学报, 35, 71-79.]
文章导航

/

[an error occurred while processing this directive]