[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]

天津沼泽湿地芦苇叶片的碳稳定同位素比值分布特征及其环境影响因素

展开
  • 天津师范大学天津市水资源与水环境重点实验室, 天津 300387

# 共同第一作者

收稿日期: 2015-05-27

  录用日期: 2015-10-04

  网络出版日期: 2015-12-02

基金资助

基金项目 天津市应用基础与前沿技术研究项目(15JCQNJC08100)、天津市高等学校创新团队培养计划“天津海岸带水资源与区域生态环境变迁研究” (TD12-5037)和天津师范大学校博士基金项目(52XB1209)

Foliar stable carbon isotope ratios of Phragmites australis and the relevant environmental factors in marsh wetlands in Tianjin

Expand
  • Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China

# Co-first authors

Received date: 2015-05-27

  Accepted date: 2015-10-04

  Online published: 2015-12-02

摘要

天津芦苇(Phragmites australis)沼泽具有重要的生态功能。目前天津地区水体咸化、氮污染和水资源短缺问题严重, 显著影响了芦苇湿地的植物生理生态过程。植物稳定碳同位素组成(碳稳定同位素比值(δ13C))能够记录与植物生长过程相关联的环境变化信息, 反映植物对环境变化的生理生态适应特性。该研究调查了天津七里海、北大港和大黄堡湿地芦苇叶片的δ13C分布特征, 探讨了影响该地区叶片δ13C值变化的主要因素。研究表明: 1)天津芦苇湿地植物叶片δ13C的变化范围在-26.3‰ - -23.6 ‰之间, 平均值为-25.8‰; 2)芦苇叶片δ13C与底泥相对含水量呈显著负相关关系, 与底泥有效氮和全氮含量呈显著正相关关系, 而与底泥盐度和磷含量没有显著相关关系; 水分条件和底泥氮营养状况是影响叶片的δ13C值变化的主要因素; 3)淹水条件下, 芦苇叶片δ13C与叶片质量氮含量呈显著正相关关系, 与叶碳氮比呈显著负相关关系, 8月份七里海湿地干涸打破了此相关关系。当前环境压力下, 天津沼泽湿地干涸极大地改变了芦苇的氮、水平衡和植物对水、氮资源的利用策略, 而湿地干涸对该过程的影响要高于盐度和氮负荷增加。

本文引用格式

陈清, 王义东, 郭长城, 王中良 . 天津沼泽湿地芦苇叶片的碳稳定同位素比值分布特征及其环境影响因素[J]. 植物生态学报, 2015 , 39(11) : 1044 -1052 . DOI: 10.17521/cjpe.2015.0101

Abstract

Aims Phragmites australis marshes in Tianjin play an important role in ecosystem functioning. Wetlands of Tianjin municipality have been suffering from serious nitrogen loading, salinization and water shortage. The foliar stable carbon isotope ratio (δ13C) is a good parameter which records environmental change information associated with the plant growth process, and reflects physiological and ecological responses of plants to environment changes. The objective of this study is to investigate the effects of environment stress on the leaf δ13C of P. australis in marsh wetlands in Tianjin municipality.Methods This study was conducted in Qilihai, Beidagang, and Dahuangpu marsh wetlands. We investigated the foliar δ13C of P. australis and sediment properties, and evaluated the relationships between the foliar δ13C and sediment environmental factors. Important findings 1) Foliar δ13C ranged from -26.3‰ to -23.6‰, with an average value of -25.8‰. 2) Sediment water and nitrogen status were the important factors affecting reed foliar δ13C. Foliar δ13C was negatively correlated to sediment relative water content, and positively correlated to sediment total nitrogen and available nitrogen content. In contrast, foliar δ13C was not significantly correlated to sediment salinity and phosphorus content. 3) Leaf δ13C were significantly positively correlated with leaf nitrogen content, and negatively correlated with leaf carbon and nitrogen ratio across all site. However, these relationships were not detected due to the wetland drainage at Qilihai site in August. Wetland drainage changed the plant water and nitrogen balance, and further affected water and nitrogen utilization strategies of P. australis. Moreover, wetland drainage had stronger effects on these processes than nitrogen loading and salinization.

[an error occurred while processing this directive]

参考文献

1 Barter MA, Li ZW, Xu JL (2001). Shorebird numbers on the Tianjin Municipality coast in May 2000.Stilt, 39, 2-9.
2 Cao SK, Feng Q, Si JH, Chang ZQ, Zuo MC, Xi HY, Su YH (2009). Summary on the plant water use efficiency at leaf level.Acta Ecologica Sinica, 29, 3882-3892.
2 (in Chinese with English abstract) [曹生奎, 冯起, 司建华, 常宗强, 卓玛错, 席海洋, 苏永红 (2009). 植物叶片水分利用效率研究综述. 生态学报, 29, 3882-3892.]
3 Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants.New Phytologist, 200, 950-965.
4 Chen Q, Gao J, Wang ZL, Wang YD (2014). Variation characteristics of reed marshes in Tianjin and its cause during 1984-2009.Wetland Science, 12, 325-331.
4 (in Chinese with English abstract) [陈清, 高军, 王中良, 王义东 (2014). 1984-2009 年天津市典型芦苇沼泽变化特征及成因分析. 湿地科学, 12, 325-331.]
5 Choi WJ, Ro HM, Chang SX (2005). Carbon isotope composition of Phragmites australis in a constructed saline wetland.Aquatic Botany, 82, 27-38.
6 Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate.Proceedings of the National Academy of Sciences of the United States of America, 107, 5738-5743.
7 Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, Djagbletey G, Hien F, Compaore H, Diallo A, Grace J, Lloyd J (2010). Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands.Plant, Cell & Environment, 33, 959-980.
8 Duursma RA, Marshall JD (2006). Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest.Trees, 20, 496-506.
9 Farquhar GD, Cernusak LA (2012). Ternary effects on the gas exchange of isotopologues of carbon dioxide.Plant, Cell & Environment, 35, 1221-1231.
10 Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis.Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537.
11 Feng XP, Wang YD, Chen Q, Guo CC, Wang ZL (2014). Research on the spatial evolvement regulations of soil salt of the coastal natural wetlands in Tianjin. Journal of Tianjin Normal University (Natural Science Edition), 34(2), 41-48.
11 (in Chinese with English abstract) [冯小平, 王义东, 陈清, 郭长城, 王中良 (2014). 天津滨海湿地土壤盐分空间演变规律研究. 天津师范大学学报: (自然科学版), 34(2), 41-48.]
12 Gibberd MR, Turner NC, Storey R (2002). Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.).Annals of Botany, 90, 715-724.
13 Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H (2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia.Plant and Soil, 340, 227-238.
14 Guo J, Yang YJ (2011). The characteristics of precipitation changes in Tianjin in recent 20 years.Journal of Arid Land Resources and Environment, 25(7), 80-83.
14 (in Chinese with English abstract) [郭军, 杨艳娟 (2011). 近20年来天津市降水资源的变化特征. 干旱区资源与环境, 25(7), 80-83.]
15 Hamerlynck EP, Huxman TE, McAuliffe JR, Smith SD (2004). Carbon isotope discrimination and foliar nutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils.Oecologia, 138, 210-215.
16 Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition.Oecologia, 123, 32-40.
17 Jiang QZ, Roche D, Monaco TA, Durham S (2006). Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity.Field Crops Research, 96, 269-278.
18 Kohn MJ (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate.Proceedings of the National Academy of Sciences of the United States of America, 107, 19691-19695.
19 Li J, Liu CQ, Yue PJ, Zhu ZZ, Zhang GP, Xiang M, Li Y (2010). Hydrochem ical evidence of surface water salinization process in the Tianjin coastal plain, China.Environmental Chemistry, 29, 285-289.
19 (in Chinese with English abstract) [李军, 刘丛强, 岳甫均, 朱兆洲, 张国平, 项萌, 李勇 (2010). 天津地区地表水咸化的水化学证据. 环境化学, 29, 285-289.]
20 Liu XZ, Zhang Y, Su Q, Tian YL, Quan B, Wang GA (2014). Research progress in responses of modern terrestrial plant carbon isotope composition to climate change.Advances in Earth Science, 29, 1341-1354.
20 (in Chinese with English abstract) [刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安 (2014). 现代陆生植物碳同位素组成对气候变化的响应研究进展. 地球科学进展, 29, 1341-1354.]
21 Marks M, Lapin B, Randall J (1994). Phragmites australis (P. communis): Threats, management and monitoring.Natural Areas Journal, 14, 285-294.
22 Sardans J, Penñuuelas J, Estiarte M, Prieto P (2008). Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland.Global Change Biology, 14, 2304-2316.
23 Sheng WP, Ren SJ, Yu GR, Fang HJ, Jiang CM, Zhang M (2011). Patterns and driving factors of WUE and NUE in natural forest ecosystems along the Northsouth Transect of Eastern China.Journal of Geographical Sciences, 21, 651-665.
24 Wang WW (2011). Nutrient Dynamic and Stable Isotope Indicators in Tidal Flats of the Yangtze Estuary. PhD dissertation, East China Normal University, Shanghai.
24 (in Chinese with English abstract) [王伟伟 (2011). 长江口潮滩营养动态与稳定同位素指示研究. 博士学位论文, 华东师范大学, 上海. 77-87.]
25 Wang WW (2012).Response of δ13C Values of Wetland Ecosystem Plants to Soil Salinity in Yellow River Delta. Master degree dissertation, Ludong University, Yantai, Shandong.
25 (in Chinese with English abstract) [王文文 (2012). 黄河三角洲湿地生态系统植物δ13C值对土壤盐分的响应. 硕士学位论文, 鲁东大学, 山东烟台. 22-51.]
26 Waring EF, Maricle BR (2012). Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding.Environmental and Experimental Botany, 77, 77-86.
27 Waring EF, Maricle BR (2013). Stomatal conductance correlates with flooding tolerance in Phragmites australis and Sorghum halepense.Transactions of the Kansas Academy of Science, 115, 161-166.
28 Wei L, Yan CL, Guo XY, Ye BB (2008). Variation in the δ13C of two mangrove plants is correlated with stomatal response to salinity.Journal of Plant Growth Regulation, 27, 263-269.
29 Winter K, Aranda J, Holtum JAM (2005). Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism.Functional Plant Biology, 32, 381-388.
30 Wu GH, Chen SR, Su RX, Jia MQ, Li WQ (2011). Temporal trend in surface water resources in Tianjin in the Haihe River Basin, China.Hydrological Processes, 25, 2141-2151.
31 Xu ZZ, Zhou GS, Wang YH (2007). Effects of drought and rewatering on carbon and nitrogen allocations in Leymus chinensis grass.Journal of Meteorology and Environment, 23(3), 65-71.
31 (in Chinese with English abstract) [许振柱, 周广胜, 王玉辉 (2007). 干旱和复水对羊草碳氮分配的影响. 气象与环境学报, 23(3), 65-71.]
32 Xue DM, Boeckx P, Wang ZL (2014). Nitrate sources and dynamics in the salinized rivers and estuaries—A δ15 N- and δ18O-NO3- isotope approach.Biogeosciences Discussions, 11, 4563-4589.
33 Yang ZF, Xie T, Liu Q (2014). Physiological responses of Phragmites australis to the combined effects of water and salinity stress.Ecohydrology, 7, 420-426.
34 Zhan XY, Yu GR, Sheng WP, Fang HJ (2012). Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the Northsouth Transect of East China.Chinese Journal of Applied Ecology, 23, 587-594.
34 (in Chinese with English abstract) [展小云, 于贵瑞, 盛文萍, 方华军 (2012). 中国东部南北样带森林优势植物叶片的水分利用效率和氮素利用效率. 应用生态学报, 23, 587-594.]
35 Zhang J, Gu L, Bao F, Cao Y, Hao Y, He J, Li J, Li Y, Ren Y, Wang F, Wu R, Yao B, Zhao Y, Lin G, Wu B, Lu Q, Meng P (2015). Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape- building desert plant species.Biogeosciences, 12, 15-27.
36 Zheng SX, Shangguan, ZP (2007). Photosynthetic character- istics and the ir relationships with leaf nitrogen content and leaf mass per area in different plant functional types.Acta Ecologica Sinica, 27, 58171-594181.
36 (in Chinese with English abstract) [郑淑霞, 上官周平 (2007). 不同功能型植物光合特性及其与叶氮含量、比叶重的关系. 生态学报, 27, 58171-181594.]
文章导航

/

[an error occurred while processing this directive]