[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响

展开
  • 1西南科技大学生命科学与工程学院, 四川绵阳 621010
    2四川省生物质资源利用与改性工程技术研究中心, 四川绵阳 621010

收稿日期: 2021-04-28

  录用日期: 2021-07-15

  网络出版日期: 2021-09-18

基金资助

四川省“十四五”重点攻关项目(20zs2172);四川省重点研发项目(2019YFN0005);四川省大学生创新创业训练计划资助项目(19xcy056)

Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage

Expand
  • 1School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
    2Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang, Sichuan 621010, China

Received date: 2021-04-28

  Accepted date: 2021-07-15

  Online published: 2021-09-18

Supported by

14th Five-Year Key Project of Sichuan Province(20zs2172);Key Research and Development Projects of Sichuan Province(2019YFN0005);Sichuan’s Training Program of Innovation and Enterpreneurship for Undergraduate(19xcy056)

摘要

竹子的高速生长主要发生在无枝无叶的笋期, 并对水分需求巨大。水分不仅参与植物体内各种代谢, 而且水分转运可促进光合产物、矿质元素、生长激素等物质流动。竹子夜间主要由根压驱动水分转运, 但在日间尤其是下午根压基本为负值, 明确竹笋日间蒸腾作用发生机制及其对水分运输的影响对竹林培育有重要意义。该研究以不同伸长阶段的慈竹(Bambusa emeiensis)笋为材料, 研究了茎秆和竹箨的气孔特征、气孔导度与蒸腾速率等生理特征及在离体条件下竹笋的水分转运速率。结果表明: 1)不同发育状态的竹笋茎秆及箨鞘表面均分布有大量气孔, 气孔小且凹陷, 光合速率及叶绿素a、b含量极低, 但气孔导度和蒸腾速率均显著高于成熟叶片, 表明笋体和箨鞘是竹笋主要的呼吸和蒸腾部位。2)离体条件下竹笋的番红示踪表明, 高生长阶段的竹笋茎秆中番红上升速率较快, 有着较强的蒸腾。竹箨分离后, 番红仍然能够扩散和运输, 表明笋体茎秆也存在一定的蒸腾, 但与竹箨包裹的竹笋相比, 番红在分离竹箨后的笋体中上升速度显著下降, 表明竹箨对笋体内水分运输影响较大。3)箨环处的组织解剖发现, 节间的纵向维管束在竹节处特化形成一个类板状结构, 弯曲伸入竹箨, 是竹箨影响笋体内水分运输的重要结构基础。上述结果表明, 日间竹笋水分通过茎秆和竹箨表面的气孔大量蒸散, 产生蒸腾拉力驱动笋体内水分转运。该研究也发现, 随着茎秆成熟, 竹箨松动并开始脱落, 茎秆表面的气孔宽度增加, 加大了气孔的开口大小, 增大了节间气孔与大气水气交换的有效面积, 在一定程度上弥补了竹箨脱落时减少的蒸腾拉力。

本文引用格式

李唐吉, 王懋林, 曹颖, 徐刚, 杨琪祺, 任思源, 胡尚连 . 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响[J]. 植物生态学报, 2021 , 45(12) : 1365 -1379 . DOI: 10.17521/cjpe.2021.0164

Abstract

Aims Water transport is of critical impact on the growth of bamboo shoots. The mechanism of diurnal water transpiration by bamboo shoots, and its effect on water transport was not yet fully comprehended. The objectives of this study include: 1) to characterize the structure of bamboo shoots that influence transpiration; 2) to examine the ability of the structure in transporting water; 3) to examine the structure of culm sheath for understanding water transfer in bamboo shoots.

Methods Bambusa emeiensisshoots of different elongation stages were used to characterize the stomata, for examining stomatal conductance (Gs), transpiration rate (Tr) and other physiological features of culm sheaths and shoot body. Water transport rate of shoots in vitro was also examined.

Important findings The results showed that: 1) there are a large number of small and concave stomata on the surface of culm sheath and bamboo shoot of different development states, their net photosynthetic rate (Pn), chlorophyll (Chl) a, and Chl b content were extremely low, but Gs and Tr were significantly higher than that of the mature leaves. These indicated that culm sheath and bamboo shoot play important roles in transpiration and respiration. 2) The tracing results of safranine solution in vitro showed that shoots of higher daily elongation rate had stronger transpiration, and were higher rising rate of safranine solution in the bamboo shoots. When culm sheaths of bamboo shoots were separated, the safranine solution could still diffused and transported in the shoot bodies, indicating that the shoot body itself carried some transpiration. However, compared with the intact bamboo shoots wrapped by culm sheaths, the rising safranine solution decreased significantly after the culm sheaths were separated, indicating that the culm sheath could make important contribution for the water transportation. 3) Anatomical analysis showed that some longitudinal vascular bundles of the internodes formed a plate-like structure (PLS) at the bamboo nodes, and the ends of PLS gradually bent and stretched into the bamboo sheath. The PLS may be an important structural basis for water transport of bamboo sheath.

[an error occurred while processing this directive]

参考文献

[1] Becker T, Knoche M (2011). Water movement through the surfaces of the grape berry and its stem. American Journal of Enology and Viticulture, 62, 340-350.
[2] Belin C, Thomine S, Schroeder JI (2010). Water balance and the regulation of stomatal movements//Pareek A, Sopory S, Bohnert H. Abiotic Stress Adaptation in Plants. Springer, Dordrecht. 283-305.
[3] Cai XA, Zeng XP, Cheng YQ (2015). Stem corticular photosynthesis: ecophysiological functions and their measurement. Acta Ecologica Sinica, 35, 6909-6922.
[3] [ 蔡锡安, 曾小平, 陈远其 (2015). 树干皮层光合作用--生理生态功能和测定方法. 生态学报, 35, 6909-6922.]
[4] Casson SA, Hetherington AM (2010). Environmental regulation of stomatal development. Current Opinion in Plant Biology, 13, 90-95.
[5] Čermák J, Kučera J, Bauerle WL, Phillips N, Hinckley TM (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27, 181-198.
[6] Chen YJ, Bongers F, Tomlinson K, Fan ZX, Lin H, Zhang SB, Zheng YL, Li YP, Cao KF, Zhang JL (2016). Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiology, 36, 736-747.
[7] Cheng LY, Wen X, Ma DD, Li DD, Xu XL, Gao Y, Zhang RM (2017). Spatial and temporal change of carbohydrates during rapid growth processes of Phyllostachys edulis. Journal of Zhejiang A&F University, 34, 261-267.
[7] [ 程路芸, 温星, 马丹丹, 李丹丹, 许馨露, 高岩, 张汝民 (2017). 毛竹快速生长过程中碳水化合物的时空变化. 浙江农林大学学报, 34, 261-267.]
[8] Cui K, He CY, Zhang JG, Liao SX (2012). Characteristics of temporal and spatial tissue development during the rapidly growing stage of moso bamboo culms. Forest Research, 25, 425-431.
[8] [ 崔凯, 何彩云, 张建国, 廖声熙 (2012). 毛竹茎秆组织速生的时空发育特征. 林业科学研究, 25, 425-431.]
[9] Damesin C (2003). Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytologist, 158, 465-475.
[10] Ding YL, Fan RW, Huang JS (2000). Development and ultrastructure of the phloem ganglion in bamboo node. Acta Botanica Sinica, 42, 1009-1013.
[11] Ding YL, Liese W (1995). On the nodal structure of bamboo. Journal of Bamboo Research, (1), 24-32.
[11] [ 丁雨龙, Liese W (1995). 竹节解剖构造的研究. 竹子学报, (1), 24-32.]
[12] Dong RY (2010). Chemical Analysis of Phyllostachys Nigra Materials and the Skin Pigment. PhD dissertation, Zhejiang A&F University, Hangzhou.
[12] [ 董荣莹 (2010). 紫竹杆化学成分和表皮色素的研究. 博士学位论文, 浙江农林大学, 杭州.]
[13] Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495-505.
[14] Fang DM, Mei TT, Röll A, Hölscher D (2019). Water transfer between bamboo culms in the period of sprouting. Frontiers in Plant Science, 10, 786. DOI: 10.3389/fpls.2019. 00786.
[15] Franks PJ, Drake PL, Beerling DJ (2009). Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment, 32, 1737-1748.
[16] Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100, 291-308.
[17] Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA (2009). Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant, Cell & Environment, 32, 828-836.
[18] Jupa R, Plavcová L, Flamiková B, Gloser V (2016). Effects of limited water availability on xylem transport in Liana Humulus lupulus L. Environmental and Experimental Botany, 130, 22-32.
[19] Kadambi K (1949). On the ecology and silviculture of Dendrocalamus strictus in the bamboo forests of Bhadravati Division, Mysore State, and comparative notes on the species Bambusa arundinacea, Oxytenanthera monostigma and Oxytenanthera stocksii. Indian Forester, 75(9), 334-349.
[20] Kim HK, Park J, Hwang I (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65, 1895-1904.
[21] Lacombe B, Achard P (2016). Long-distance transport of phytohormones through the plant vascular system. Current Opinion in Plant Biology, 34, 1-8.
[22] Li QL, Wang LJ, Gao PJ, Wei SJ, Lü JX, Gao Y, Zhang RM (2020). Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period. Journal of Zhejiang A&F University, 37, 1128-1135.
[22] [ 栗青丽, 王灵杰, 高培军, 韦赛君, 吕嘉欣, 高岩, 张汝民 (2020). 竹茎秆快速生长期淀粉分解相关酶基因表达的分析. 浙江农林大学学报, 37, 1128-1135.]
[23] Liese W (1998). The Anatomy of Bamboo Culms. International Network for Bamboo and Rattan, Beijing
[24] Liese W, Köhl M (2015). Bamboo-The Plant and Its Uses. Springer, Cham, Switzerland.
[25] Lima RAF, Rother DC, Muler AE, Lepsch IF, Rodrigues RR (2012). Bamboo overabundance alters forest structure and dynamics in the Atlantic forest hotspot. Biological Conservation, 147, 32-39.
[26] Liu CC, He NP, Zhang JH, Li Y, Wang QF, Sack L, Yu GR (2018). Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 32, 20-28.
[27] Liu XQ, Wang ZL (2013). 15 kinds of bamboo and their properties of pulping and papermaking. Paper and Paper Making, 32(1), 33-36.
[27] [ 刘秀琼, 汪治林 (2013). 15种竹材及其制浆造纸性能. 纸和造纸, 32(1), 33-36.]
[28] Maier CA (2001). Stem growth and respiration in loblolly pine plantations differing in soil resource availability. Tree Physiology, 21, 1183-1193.
[29] Pan RC (2004). Plant Physiology. 5th ed. Higher Education Press, Beijing.
[29] [ 潘瑞炽 (2004). 植物生理学. 5版. 高等教育出版社, 北京.]
[30] Qiu NW, Wang XS, Yang FB, Yang XG, Yang W, Diao RJ, Wang X, Cui J, Zhou F (2016). Fast extraction and precise determination of chlorophyll. Chinese Bulletin of Botany, 51, 667-678.
[30] [ 邱念伟, 王修顺, 杨发斌, 杨晓刚, 杨文, 刁润洁, 王秀, 崔静, 周峰 (2016). 叶绿素的快速提取与精密测定. 植物学报, 51, 667-678.]
[31] Ren Y, Zhang B, She XP (2010). Mechanism on response of abaxial and adaxial stomatal movement of broad bean to light/dark. Journal of Shaanxi Normal University (Natural Science Edition), 38, 68-71.
[31] [ 任筠, 张蓓, 佘小平 (2010). 蚕豆上、下表皮气孔运动光/暗响应机制. 陕西师范大学学报(自然科学版), 38, 68-71.]
[32] Shi H, Wang HX, Li YY, Liu X (2011). Leaf surface microstructure of Ligustrum lucidum and Viburnum odoratissimum observed by atomic force microscopy (AFM). Acta Ecologica Sinica, 31, 1471-1477.
[32] [ 石辉, 王会霞, 李秧秧, 刘肖 (2011). 女贞和珊瑚树叶片表面特征的AFM观察. 生态学报, 31, 1471-1477.]
[33] Song XZ, Peng CH, Zhou GM, Gu HH, Li Q, Zhang C (2016). Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of moso bamboo (Phyllostachys heterocycla). Scientific Reports, 6, 25908. DOI: 10.1038/srep25908.
[34] Sun CF, Wang ML, Hu SL (2018). Effects of different soil water content on growth of Bambusa emeiensis. Journal of Northeast Forestry University, 46(10), 9-12.
[34] [ 孙昌法, 王懋林, 胡尚连 (2018). 不同土壤含水量对慈竹(Bambusa emeiensis)生长的影响. 东北林业大学学报, 46(10), 9-12.]
[35] Sun HY, Lou YF, Li LC, Zhao HS, Gao ZM (2017). Research advances in the growth and development of bamboo culm. World Forestry Research, 30, 18-23.
[35] [ 孙化雨, 娄永峰, 李利超, 赵韩生, 高志民 (2017). 竹类植物茎秆生长发育研究进展. 世界林业研究, 30, 18-23.]
[36] Sun M, Tian K, Zhang Y, Wang H, Guan DX, Yue HT (2017). Research on leaf functional traits and their environmental adaptation. Plant Science Journal, 35, 940-949.
[36] [ 孙梅, 田昆, 张贇, 王行, 管东旭, 岳海涛 (2017). 植物叶片功能性状及其环境适应研究. 植物科学学报, 35, 940-949.]
[37] Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP (2012). Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist, 193, 387-396.
[38] Tikhonov KG, Khristin MS, Klimov VV, Sundireva MA, Kreslavski VD, Sidorov RA, Tsidendambayev VD, Savchenko TV (2017). Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue. Russian Journal of Plant Physiology, 64, 73-82.
[39] Wang FS, Tian XL, Ding YL, Wan XC, Tyree MT (2011). A survey of root pressure in 53 Asian species of bamboo. Annals of Forest Science, 68, 783-791.
[40] Wang SG (2017). Bamboo sheath-A modified branch based on the anatomical observations. Scientific Reports, 7, 16132. DOI: 10.1038/s41598-017-16470-7.
[41] Wang SG, He WZ, Zhan H (2018). Culm sheaths affect height growth of bamboo shoots in Fargesia yunnanensis. Brazilian Journal of Botany, 41, 255-266.
[42] Wang SG, Pei JL, Li J, Tang GJ, Zhao JW, Peng XP, Nie SX, Ding YL, Wang CM (2020a). Sucrose and starch metabolism during Fargesia yunnanensis shoot growth. Physiologia Plantarum, 168, 188-204.
[43] Wang SG, Zhan H, Li PC, Chu CH, Li J, Wang CM (2020b). Physiological mechanism of internode bending growth after the excision of shoot sheath in Fargesia yunnanensis and its implications for understanding the rapid growth of bamboos. Frontiers in Plant Science, 11, 418. DOI: 10.3389/fpls.2020.00418.
[44] Wang WJ (2004). Methods for the determination of CO2 flux from non-photosynthetic organs of trees and their influences on the results. Acta Ecologica Sinica, 24, 2056-2067.
[44] [ 王文杰 (2004). 林木非同化器官CO2通量的测定方法及对结果的影响. 生态学报, 24, 2056-2067.]
[45] Wang WJ, Yang FJ, Zu YG, Wang HM, Kentaro K, Kaichiro S, Takayoshi K (2003). Stem respiration of a larch (Larix gmelini) plantation in Northeast China. Acta Botanica Sinica, 45, 1387-1397.
[45] [ 王文杰, 杨逢建, 祖元刚, 王慧梅, Kentaro K, Kaichiro S, Takayoshi K (2003). 中国东北地区兴安落叶松林树干呼吸的研究. 植物学报, 45, 1387-1397.]
[46] Wang XX, Liu L, Zhang J, Wang YK, Wen GS, Gao RF, Gao Y, Zhang RM (2012). Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting. Chinese Journal of Plant Ecology, 36, 456-462.
[46] [ 王星星, 刘琳, 张洁, 王玉魁, 温国胜, 高荣孚, 高岩, 张汝民 (2012). 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化. 植物生态学报, 36, 456-462.]
[47] Wegner LH (2014). Root pressure and beyond: energetically uphill water transport into xylem vessels? Journal of Experimental Botany, 65, 381-393.
[48] Xia HT, Ji HB, Wang YY, Li XW, Lu X (2019). Height-growth rhythm of young sympodial bamboos including Dendrocalamus brandisii. Journal of Zhejiang Agricultural Sciences, 60, 807-809.
[48] [ 夏海涛, 季海宝, 王月英, 李效文, 卢翔 (2019). 勃氏甜龙竹等丛生竹幼竹的高生长规律. 浙江农业科学, 60, 807-809.]
[49] Xie ZS, Cao HM, Li B, Li WF, Xu WP, Wang SP (2012). Changes of water transportation in berry vascular bundle at different developmental phases of kyoho grape berry. Scientia Agricultura Sinica, 45, 111-117.
[49] [ 谢兆森, 曹红梅, 李勃, 李为福, 许文平, 王世平 (2012). 巨峰葡萄果实不同发育期维管束水分运输变化. 中国农业科学, 45, 111-117.]
[50] Xie ZS, Du HR, Xiang DF, Qi YS (2018). The changes of anatomical structure of vascular bundles and water transport in blueberry fruit during different growth and development stages. Plant Physiology Journal, 54, 45-53.
[50] [ 谢兆森, 杜鸿儒, 项殿芳, 齐永顺 (2018). 蓝莓果实不同发育期维管束解剖结构与水分运输变化. 植物生理学报, 54, 45-53.]
[51] Xiong WY, Ding ZF, Li YF (1980). Intercalary meristem and internodal elongation of bamboo plants. Scientia Silvae Sinicae, (2), 81-89.
[51] [ 熊文愈, 丁祖福, 李又芬 (1980). 竹类植物的居间分生组织与节间生长--I秆茎的居间分生组织与节间生长. 林业科学, (2), 81-89.]
[52] Xu M, DeBiase TA, Qi Y, Goldstein A, Liu ZG (2001). Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology, 21, 309-318.
[53] Yang SJ, Zhang YJ, Goldstein G, Sun M, Ma RY, Cao KF (2015). Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage. Tree Physiology, 35, 964-974.
[54] Yang SJ, Zhang YJ, Sun M, Goldstein G, Cao KF (2012). Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree Physiology, 32, 414-422.
[55] Yang Y, Yang QJ, Yan SS, Ma SM, Wang YF (2013). Study on stomatal characteristics in different varieties of Codiaeum variegatum. Guangdong Agricultural Sciences, 40, 30-32.
[55] [ 杨洋, 杨荞嘉, 鄢思斯, 马三梅, 王永飞 (2013). 不同品种变叶木表皮气孔特性的研究. 广东农业科学, 40, 30-32.]
[56] Yu F, Ding YL, Yin ZF (2007). Ultracytochemical localization of Ca2+-ATPase during the phloem ganglion development in Phyllostachys edulis. Acta Botanica Boreali-Occidentalia Sinica, 27, 4645-4650.
[57] Yu M (2004). A stain for freehand slices with a polychromatic reaction. Bulletin of Biology, 39(3), 58-63.
[57] [ 于明 (2004). 一种呈多色反应的徒手切片染色剂. 生物学通报, 39, 58-63.]
[58] Zhang GJ, Zhou Q, Wang Q, Gao LP, Li DY, Zuo JH (2021). Research status of preservation technology on postharvest lettuce. Storage and Process, 21, 135-140.
[58] [ 张桂君, 周茜, 王清, 高丽朴, 李大勇, 左进华 (2021). 生菜采后保鲜技术研究现状. 保鲜与加工, 21, 135-140.]
[59] Zhang J, Liu MY (2008). Research on photosynthetic characteristics of Physalis alkekengi. Jiangsu Agricultural Sciences, 36, 166-167.
[59] [ 张健, 刘美艳 (2008). 黄果酸浆的光合特性研究. 江苏农业科学, 36, 166-167.]
[60] Zhang YJ, Meinzer FC, Qi JH, Goldstein G, Cao KF (2013). Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Plant, Cell & Environment, 36, 149-158.
[61] Zhao B, Hu SL, Liu H (2017). Advance in postharvest physiology and storage technology of bamboo shoots. Journal of Bamboo Research, 36, 66-71.
[61] [ 赵博, 胡尚连, 刘红 (2017). 竹笋采后生理及储藏保鲜技术的研究进展. 竹子学报, 36, 66-71.]
文章导航

/

[an error occurred while processing this directive]