[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]热带亚热带26种蕨类植物的吸收根解剖特征
收稿日期: 2021-09-10
录用日期: 2021-12-22
网络出版日期: 2022-02-16
基金资助
广西八桂青年学者项目
Absorptive root anatomical traits of 26 tropical and subtropical fern species
Received date: 2021-09-10
Accepted date: 2021-12-22
Online published: 2022-02-16
Supported by
Bagui Young Scholarship of Guangxi Zhuang Autonomous Region
植物吸收根的生理功能是从土壤中吸收水分和营养物质, 研究其解剖结构有助于揭示植物的环境适应策略。热带亚热带地区蕨类植物丰富, 生态和经济价值较高, 但目前对这一重要植物类群的吸收根解剖特征的研究仍然缺乏。该研究测定了分布在热带亚热带地区4种典型森林的共26种蕨类植物吸收根的解剖特征, 分析它们的种间差异, 结合系统发育与全球自然分布区的气候因子解释根系性状的变异。同时, 通过收集亚热带木本被子植物和温带蕨类植物相关的已发表数据, 比较不同类群的根系性状相关关系的差异。结果表明: (1)这些蕨类植物吸收根特征的种间差异显著, 8个根系性状的种间变异系数范围为20.61%-41.75%。(2)除皮层厚度外根系性状无显著的系统发育信号, 说明性状变异受系统发育的影响较小; 气候因子显著影响根系特征, 根直径和皮层厚度随着最干月(季)降水量减少而增大。(3)随着吸收根直径的减小, 亚热带木本被子植物趋于具有更低的皮层厚度/中柱直径比值, 而蕨类植物则相反; 与温带蕨类相比, 该研究中蕨类植物具有更大的根直径、皮层厚度和管胞直径。该研究有助于提高对热带亚热带蕨类植物根系生理生态适应性的认识。
项伟, 黄冬柳, 朱师丹 . 热带亚热带26种蕨类植物的吸收根解剖特征[J]. 植物生态学报, 2022 , 46(5) : 593 -601 . DOI: 10.17521/cjpe.2021.0328
Aims The plant absorptive roots function to absorb water and nutrients. Investigations of anatomical traits of the roots are to understanding environmental adaptations of plant species. Ferns in tropical and subtropical regions are abundant and of important ecological and economic values. However, the anatomical traits of the absorptive roots of ferns are not fully comprehended.
Methods We investigated anatomical traits of absorptive roots for 26 fern species from four typical tropical/ subtropical forests by analyzing inter-specific differences in the traits across the species to explain the influence of phylogeny and climate. In addition, we compiled relevant root traits of subtropical angiosperm tree species and temperate fern species from literature to explore the trait differences among the groups.
Important findings (1) We found significant differences in eight root anatomical traits among the 26 fern species, with coefficient of variation ranging from 20.61% to 41.75%. (2) Root traits showed no significant phylogeny signal except in cortex thickness (CT), indicating little affection from phylogeny. However, climate might exert significant impacts on root traits, i.e., root diameter (RD) and CT significantly increased with decreasing precipitation of the driest month (quarter). (3) As RD decreases, the subtropical angiosperm woody plants showed a significant decrease in the ratio of CT to stele diameter (SD), but fern had an opposite pattern. Compared to temperate ferns, the tropical and subtropical ferns had higher RD, CT, and tracheid diameter (TD).
Key words: absorptive root; climate; phylogeny; root diameter; cortex thickness; stele diameter
[1] | Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220, 1108-1115. |
[2] | Carlquist S, Schneider EL (2001). Vessels in ferns: structural, ecological, and evolutionary significance. American Journal of Botany, 88, 1-13. |
[3] | Chang WJ, Guo DL (2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese Version), 32, 1248-1257. |
[3] | [ 常文静, 郭大立 (2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.] |
[4] | Chen WL, Zeng H, Eissenstat DM, Guo DL (2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856. |
[5] | Chen X, Chen DQ, Liu HK, Zhao CZ, Zhao WT, Dong Z, Zhang YT, Wang YP (2021). Responses of fine root anatomical traits of eleven tree species to the soil conditions in coastal saline-alkali stand sites of the Yellow River delta. Acta Ecologica Sinica, 41, 4150-4159. |
[5] | [ 陈旭, 陈冬倩, 刘洪凯, 赵春周, 赵文太, 董智, 张永涛, 王延平 (2021). 黄河三角洲滨海盐碱地11个造林树种细根解剖性状对土壤条件的响应. 生态学报, 41, 4150-4159.] |
[6] | Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012). Evolutionary patterns and biogeochemical significance of angiosperm root traits. International Journal of Plant Sciences, 173, 584-595. |
[7] | Ding DJ, Liao BW, Guan W, Xiong YM, Li M, Chen YJ (2016). Evaluation on service value of coastal wetland ecosystem in Dongzhai harbor mangrove nature reserve. Ecological Science, 35, 182-190. |
[7] | [ 丁冬静, 廖宝文, 管伟, 熊燕梅, 李玫, 陈玉军 (2016). 东寨港红树林自然保护区滨海湿地生态系统服务价值评估. 生态科学, 35, 182-190.] |
[8] | Ding JX, Kong DL, Zhang ZL, Cai Q, Xiao J, Liu Q, Yin HJ (2020). Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal- dominated alpine coniferous forests. Journal of Ecology, 108, 2544-2556. |
[9] | Dong XY, Wang HF, Gu JC, Wang Y, Wang ZQ (2015). Root morphology, histology and chemistry of nine fern species (Pteridophyta) in a temperate forest. Plant and Soil, 393, 215-227. |
[10] | Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo DL, et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology, 105, 1182-1196. |
[11] | Gao J, Zhou MY, Shao JJ, Zhou GY, Liu RQ, Zhou LY, Liu HY, He YH, Chen Y, Zhou XH (2021). Fine root trait-function relationships affected by mycorrhizal type and climate. Geoderma, 394, 115011. DOI: 10.1016/j.geoderma.2021.115011. |
[12] | Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ (2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425. |
[13] | Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683. |
[14] | He TP, Tan WF, Wen YG, Zhao ZH, Wen XF, Huang ZH, Men YY (2007). Diversity of rare and endangered plants in Shiwandashan Mountain National Natural Reserve. Journal of Guangxi Agricultural and Biological Science, 26, 125-131. |
[14] | [ 和太平, 谭伟福, 温远光, 赵泽红, 文祥凤, 黄志辉, 门媛媛 (2007). 十万大山国家级自然保护区珍稀濒危植物的多样性. 广西农业生物科学, 26, 125-131.] |
[15] | Huang BR, Eissenstat DM (2000). Linking hydraulic conductivity to anatomy in plants that vary in specific root length. Journal of the American Society for Horticultural Science, 125, 260-264. |
[16] | Huang Y, Wang B, Yan LM, Wei XM, Lin L, Wei JW, Li HJ (2020). Observations on the spatial and temporal patterns of amphibian diversity in Damingshan, Guangxi. Journal of Ecology and Rural Environment, 36, 968-974. |
[16] | [ 黄勇, 王波, 颜琳妙, 韦筱媚, 林莉, 韦建威, 李华坚 (2020). 广西大明山两栖动物多样性时空格局观测. 生态与农村环境学报, 36, 968-974.] |
[17] | Jin Y, Qian H (2019). V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359. |
[18] | Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872. |
[19] | Kong DL, Wang JJ, Valverde-Barrantes OJ, Kardol P (2021). A framework to assess the carbon supply-consumption balance in plant roots. New Phytologist, 229, 659-664. |
[20] | Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203. |
[21] | Kong DL, Wang JJ, Zeng H, Liu MZ, Miao Y, Wu HF, Kardol P (2017). The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots. New Phytologist, 213, 1569-1572. |
[22] | Li HB, Liu BT, McCormack ML, Ma ZQ, Guo DL (2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150. |
[23] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[24] | McAdam SAM, Brodribb TJ (2012). Stomatal innovation and the rise of seed plants. Ecology Letters, 15, 1-8. |
[25] | McCormack ML, Kaproth MA, Cavender-Bares J, Carlson E, Hipp AL, Han Y, Kennedy PG (2020). Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytologist, 228, 1824-1834. |
[26] | Page CN (2002). Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119, 1-33. |
[27] | Paradis E, Claude J, Strimmer K (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290. |
[28] | Pregitzer KS (2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270. |
[29] | Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067. |
[30] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd ed. Springer, Berlin. |
[31] | Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017). A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573. |
[32] | Valverde-Barrantes OJ, Maherali H, Baraloto C, Blackwood CB (2020). Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. New Phytologist, 228, 541-553. |
[33] | Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[34] | Wang HF, Wang ZQ, Dong XY (2019). Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China. PLOS ONE, 14, e0215126. DOI: 10.1371/journal.pone.0215126. |
[35] | Wu WX (2019). Plant Diversity, Soil Microbial Diversity and Ecosystem Multifunction in Pure and Mixed Plantations. PhD dissertation, Guangxi University, Nanning. |
[35] | [ 巫文香 (2019). 人工纯林和混交林植物、土壤微生物多样性与生态系统多功能性. 博士学位论文, 广西大学, 南宁.] |
[36] | Yang L, Huang YH, Lima LV, Sun ZY, Liu MJ, Wang J, Liu N, Ren H (2021). Rethinking the ecosystem functions of Dicranopteris, a widespread genus of ferns. Frontiers in Plant Science, 11, 581513. DOI: 10.3389/fpls.2020.581513. |
[37] | You YM, Xu JY, Cai DX, Liu SR, Zhu HG, Wen YG (2016). Environmental factors affecting plant species diversity of understory plant communities in a Castanopsis hystrix plantation chronosequence in Pingxiang, Guangxi, China. Acta Ecologica Sinica, 36, 164-172. |
[37] | [ 尤业明, 徐佳玉, 蔡道雄, 刘世荣, 朱宏光, 温远光 (2016). 广西凭祥不同年龄红椎林林下植物物种多样性及其环境解释. 生态学报, 36, 164-172.] |
[38] | Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92. |
[39] | Zhang KM, Shen Y, Zhou XL, Fang YM (2019). Analysis of fern research article trends across the Web of Science in the 21st century. Biodiversity Science, 27, 1245-1250. |
[39] | [ 张开梅, 沈羽, 周晓丽, 方炎明 (2019). 21世纪以来蕨类植物研究论文的发表情况: 基于Web of Science的数据统计. 生物多样性, 27, 1245-1250.] |
[40] | Zhang XC (2012). Lycophytes and Ferns of China. Peking University Press, Beijing. 711. |
[40] | [ 张宪春 (2012). 中国石松类和蕨类植物. 北京大学出版社, 北京. 711.] |
[41] | Zhou M, Bai WM, Li QM, Guo YM, Zhang WH (2021). Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytologist, 229, 1481-1491. |
[42] | Zhu SD, Li RH, Song J, He PC, Liu H, Berninger F, Ye Q (2016). Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Annals of Botany, 117, 497-506. |
/
〈 |
|
〉 |