[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素

展开
  • 1.西北土地退化与生态恢复国家重点实验室培育基地, 西北退化生态系统恢复与重建教育部重点实验室, 宁夏大学生态环境学院, 银川 750021
    2.宁夏大学地理科学与规划学院, 银川 750021

收稿日期: 2022-05-23

  录用日期: 2022-08-06

  网络出版日期: 2022-08-06

基金资助

宁夏自然科学基金(2022AAC02012);国家自然科学基金(32160277);中国科学院“西部青年学者”项目(XAB2019AW03)

Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation

Expand
  • 1. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
    2. School of Geography and Planning, Ningxia University, Yinchuan 750021, China

Received date: 2022-05-23

  Accepted date: 2022-08-06

  Online published: 2022-08-06

Supported by

Natural Science Foundation of Ningxia(2022AAC02012);National Natural Science Foundation of China(32160277);Chinese Academy of Sciences “Young Western Scholars”(XAB2019AW03)

摘要

植物多样性是植物群落维持生态系统稳定的基础。虽然荒漠草原植被稀少, 但其在防风固沙等方面仍发挥着不可替代的生态服务功能, 然而对荒漠植物多样性如何响应长期极端降水量变化尚缺乏深入理解。该研究依托2014年在宁夏荒漠草原设立的降水量变化(减少50%、减少30%、自然、增加30%和增加50%)的野外实验样地, 研究了2020年5-10月植物生物量和物种多样性的变化特征, 分析了二者与土壤性质的关系。随着生长季推移, 植物群落生物量、Patrick丰富度指数和Shannon-Wiener多样性指数呈先增加后降低的时间动态, Pielou均匀度指数和Simpson优势度指数无明显的变化规律。与自然降水量相比, 降水量减少对植物生物量和多样性影响较小, 尤其是降水量减少30%的处理下; 多数情况下, 降水量增加刺激了苦豆子(Sophora alopecuroides)、短花针茅(Stipa breviflora)、白草(Pennisetum centrasiaticum)等物种生长, 提高了植物生物量, 但亦未明显改变植物多样性(尤其是降水量增加30%的处理下)。对植物生物量影响显著的土壤因子包括脲酶活性、温度、含水量、pH、磷酸酶活性和蔗糖酶活性, 对植物多样性影响显著的土壤因子包括含水量、电导率和脲酶活性。该研究结果意味着, 连续7年降水量变化下, 研究区植物对适度甚至极端干旱有强的适应性; 降水量适度增加提高了土壤水分有效性, 增强了离子移动性, 刺激了酶活性, 促进了植物生长。然而, 降水量持续增加导致植物生物量增加, 植物耗水增大, 使得生长季后期土壤水分不足, 导致部分植物提前完成生命周期。

本文引用格式

王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹 . 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023 , 47(4) : 479 -490 . DOI: 10.17521/cjpe.2022.0211

Abstract

Aims Plant diversity is the basis for plant communities to maintain ecosystem stability. Despite the scarcity of vegetation, desert steppes play an irreplaceable ecological service function in terms of wind-break and sand- fixation, etc. However, how plant diversity in desert steppes responds to long-term extreme precipitation changes still remains poorly understood.

Methods Based on a long-term field experiment involving five precipitation treatments (50% reduction, 30% reduction, natural, 30% increase, and 50% increase) conducted in a desert steppe in Ningxia since 2014, the changing characteristics of plant biomass, species diversity and their relationships with soil properties were studied from May to October in 2020.

Important findings During the growing season, plant community biomass, Patrick richness index and Shannon-Wiener diversity index tended to increase first and then decrease, whereas no obvious regularities in Pielou evenness index and Simpson dominance index. Compared with the natural precipitation, the decreased precipitation had less effect on plant biomass and diversity, especially the 30% reduction in precipitation. In most cases, the increased precipitation stimulated the growth of Sophora alopecuroides, Stipa brevifloraand Pennisetum centrasiaticum,and thus increasing plant biomass. However, it did not significantly change plant diversity when precipitation increased, especially the 30% increase of precipitation. Plant biomass was significantly affected by soil urease activity, temperature, water content, pH, phosphatase activity and sucrase activity, while plant diversity was significantly affected by soil water content, electrical conductivity, and urease activity. In general, the results indicated that plants have high adaptability to moderate or even extreme drought in the research area under seven consecutive years of changing precipitation; moderately increasing precipitation increased soil water availability, enhanced exchangeable ion mobility, and stimulated enzyme activity, thereby promoting plant growth. However, the continuous increase of precipitation leaded to the increase of plant biomass and plant water consumption, resulting in the lack of soil water in the late growth season and then the early completion of the life cycle of some plants.

[an error occurred while processing this directive]

参考文献

[1] An FB, Zhang DK, Zhao JM, Chai CW, Zhao YL, Sun T (2019). Soil physical and chemical properties of different types of Gobi deserts in Hexi Corridor. Soil and Water Conservation in China, (6), 42-47.
[1] [安富博, 张德魁, 赵锦梅, 柴成武, 赵艳丽, 孙涛 (2019). 河西走廊不同类型戈壁土壤理化性质分析. 中国水土保持, (6), 42-47.]
[2] Bai XH, Zhao WW, Wang J, Ferreira CSS (2021). Precipitation drives the floristic composition and diversity of temperate grasslands in China. Global Ecology and Conservation, 32, e01933. DOI: 10.1016/j.gecco.2021.e01933.
[3] Bunting EL, Munson SM, Villarreal ML (2017). Climate legacy and lag effects on dryland plant communities in the southwestern US. Ecological Indicators, 74, 216-229.
[4] Chelmeg, Liu XP, He YH, Sun SS, Wang MM (2020). Response of herbaceous plant community characteristics to short-term precipitation change in semi-arid sandy land. Acta Prataculturae Sinica, 29(4), 19-28.
[4] [车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明 (2020). 半干旱沙地草本植物群落特征对短期降水变化的响应. 草业学报, 29(4), 19-28.]
[5] Chen ML, Zhang BW, Ren TT, Wang SS, Chen SP (2016). Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology, 40, 658-668.
[5] [陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹 (2016). 内蒙古半干旱草原土壤水分对降水格局变化的响应. 植物生态学报, 40, 658-668.]
[6] Cheng LL, Guo H, Lu Q (2013). Review on the valuation of desert ecosystem service values. Journal of Desert Research, 33(1), 281-287.
[6] [程磊磊, 郭浩, 卢琦 (2013). 荒漠生态系统服务价值评估研究进展. 中国沙漠, 33(1), 281-287.]
[7] Copeland SM, Harrison SP, Latimer AM, Damschen EI, Eskelinen AM, Fernandez-Going B, Spasojevic MJ, Anacker BL, Thorne JH (2016). Ecological effects of extreme drought on Californian herbaceous plant communities. Ecological Monographs, 86, 295-311.
[8] Cui D, Li YL, Wang XY, Zhao XY, Zhang TH (2011). Spatial distribution of aboveground biomass of grassland in desert and desertified regions in Northern China. Journal of Desert Research, 31, 868-872.
[8] [崔夺, 李玉霖, 王新源, 赵学勇, 张铜会 (2011). 北方荒漠及荒漠化地区草地地上生物量空间分布特征. 中国沙漠, 31, 868-872.]
[9] Du Y, Wang DY, Ruan YL, Mo CX, Wang DG (2020). Study on temporal and spatial variation characteristics of precipitation structure in China in recent 40 years. Water Power, 46(8), 19-23.
[9] [杜懿, 王大洋, 阮俞理, 莫崇勋, 王大刚 (2020). 中国地区近40年降水结构时空变化特征研究. 水力发电, 46(8), 19-23.]
[10] Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
[11] Eze S, Palmer SM, Chapman PJ (2018). Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status. Science of the Total Environment, 637-638, 398-407.
[12] Gao JP, Zhao RF, Zhang LH, Wang JF, Xie ZK (2021). Effects of precipitation changes on plant community diversity and soil C:N:P ecological stoichiometric characteristics in a desert steppe of China. Environmental Science, 42, 977-987.
[12] [高江平, 赵锐锋, 张丽华, 王军锋, 谢忠奎 (2021). 降雨变化对荒漠草原植物群落多样性与土壤C:N:P生态化学计量特征的影响. 环境科学, 42, 977-987.]
[13] Gherardi LA, Sala OE (2015). Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the National Academy of Sciences of the United States of America, 112, 12735-12740.
[14] Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348, 336-340.
[15] He YZ, Huang WD, Zhao X, Lv P, Wang HH (2021). Review on the impact of climate change on plant diversity. Journal of Desert Research, 41(1), 59-66.
[15] [何远政, 黄文达, 赵昕, 吕朋, 王怀海 (2021). 气候变化对植物多样性的影响研究综述. 中国沙漠, 41(1), 59-66.]
[16] Hu D, Lü GH, Wang HF, Yang Q, Cai Y (2021). Response of desert plant diversity and stability to soil factors based on water gradient. Acta Ecologica Sinica, 41, 6738-6748.
[16] [胡冬, 吕光辉, 王恒方, 杨启, 蔡艳 (2021). 水分梯度下荒漠植物多样性与稳定性对土壤因子的响应. 生态学报, 41, 6738-6748.]
[17] Hu XW, Wang YR, Wu YP (2004). Research progress on eco-physiological responses of desert grassland plants to drought conditions. Acta Prataculturae Sinica, 13(3), 9-15.
[17] [胡小文, 王彦荣, 武艳培 (2004). 荒漠草原植物抗旱生理生态学研究进展. 草业学报, 13(3), 9-15.]
[18] Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373.
[18] [黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.]
[19] IPCC Intergovernmental Panel on Climate Change (2021). Climate Change: the Physical Science Basis. Cambridge University Press, Cambridge, UK.
[20] Jia YY, Sun Y, Zhang T, Shi ZY, Maimaitiaili B, Tian CY, Feng G (2020). Elevated precipitation alters the community structure of spring ephemerals by changing dominant species density in Central Asia. Ecology and Evolution, 10, 2196-2212.
[21] Jing GH, Chen ZK, Lu QQ, Zhang Z, Zhao N, He LY, Mao ZX, Li W (2021). Response of grassland community struction to short-term nitrogen addition and water addition with different management practices in the semi- arid loess region. Acta Ecologica Sinica, 41, 8192-8201.
[21] [井光花, 陈智坤, 路强强, 张昭, 赵宁, 贺丽燕, 毛祝新, 李伟 (2021). 半干旱黄土区不同管理措施下草地群落结构对短期氮、水添加的响应. 生态学报, 41, 8192-8201.]
[22] Li CB, Peng YF, Zhao DZ, Ning Y, Zhou GY (2016). Effects of precipitation change and nitrogen addition on community structure and plant diversity in an alpine steppe on the Qinghai-Tibetan Plateau. Research of Soil and Water Conservation, 23(6), 185-191.
[22] [李长斌, 彭云峰, 赵殿智, 宁祎, 周国英 (2016). 降水变化和氮素添加对青藏高原高寒草原群落结构和物种多样性的影响. 水土保持研究, 23(6), 185-191.]
[23] Li HQ, Li YN, Zhang FW, Liu XQ, Wu QH, Mao SJ (2013). Water consumption of alpine meadow and the influence of the meteorological factors on the vegetation biomass accumulation. Journal of Arid Land Resources and Environment, 27(9), 176-181.
[23] [李红琴, 李英年, 张法伟, 刘晓琴, 吴启华, 毛绍娟 (2013). 高寒草甸植被耗水量及生物量积累与气象因子的关系. 干旱区资源与环境, 27(9), 176-181.]
[24] Liang L, Lü SH, Liu YP (2006). Numerical simulation of effect of vegetation changes of Loess Plateau on environment. Plateau Meteorology, 25, 575-582.
[24] [梁玲, 吕世华, 柳媛普 (2006). 黄土高原植被变化对环境影响的数值模拟. 高原气象, 25, 575-582.]
[25] Liu K, Nie GG, Zhang S (2020). Study on the spatiotemporal evolution of temperature and precipitation in China from 1951 to 2018. Advances in Earth Science, 35, 1113-1126.
[25] [刘凯, 聂格格, 张森 (2020). 中国1951-2018年气温和降水的时空演变特征研究. 地球科学进展, 35, 1113-1126.]
[26] Lu S, Hu ZY, Wang BP, Qin P, Wang L (2020). Spatio- temporal patterns of extreme precipitation events over China in recent 56 years. Plateau Meteorology, 39, 683-693.
[26] [卢珊, 胡泽勇, 王百朋, 秦佩, 王丽 (2020). 近56年中国极端降水事件的时空变化格局. 高原气象, 39, 683-693.]
[27] Ningxia Agricultural Exploration and Design Institute, Ningxia Animal Husbandry Bureau, Ningxia Agricultural College (1988). Ningxia Vegetation. Ningxia People’s Publishing House, Yinchuan.
[27] [宁夏农业勘查设计院, 宁夏畜牧局, 宁夏农学院 (1988). 宁夏植被. 宁夏人民出版社, 银川.]
[28] Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219.
[29] Shang SS, Lian LS, Ma T, Zhang K, Han T (2018). Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years. Arid Zone Research, 35, 68-76.
[29] [商沙沙, 廉丽姝, 马婷, 张琨, 韩拓 (2018). 近54 a中国西北地区气温和降水的时空变化特征. 干旱区研究, 35, 68-76.]
[30] Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38, 1718-1736.
[31] Sun XL, Kang S, Zhang Q, Chang CM, Ma WJ, Niu JM (2015). Relationship between species diversity, productivity, climatic factors and soil nutrients in the desert steppe. Acta Prataculturae Sinica, 24(12), 10-19.
[31] [孙小丽, 康萨如拉, 张庆, 常昌明, 马文静, 牛建明 (2015). 荒漠草原物种多样性、生产力与气候因子和土壤养分之间关系的研究. 草业学报, 24(12), 10-19.]
[32] Sun Y, He MZ, Wang L (2018). Effects of precipitation control on plant diversity and biomass in a desert region. Acta Ecologica Sinica, 38, 2425-2433.
[32] [孙岩, 何明珠, 王立 (2018). 降水控制对荒漠植物群落物种多样性和生物量的影响. 生态学报, 38, 2425-2433.]
[33] Tuo YF, Shen FY, Yang CP, Ma JM, Guo SN, Zhang D, Wu YZ (2020). Effects of rainfall on phosphorus, organic matter and pH in different land use types in middle Yunnan Plateau. Ecology and Environmental Sciences, 29, 942-950.
[33] [脱云飞, 沈方圆, 杨翠萍, 马继敏, 郭锁娜, 张岛, 吴耀中 (2020). 滇中高原降雨对不同地类土壤磷素、有机质和pH变化的影响. 生态环境学报, 29, 942-950.]
[34] Wang CH, Zhang SN, Zhang FM, Li KC, Yang K (2021). On the increase of precipitation in the Northwestern China under the global warming. Advances in Earth Science, 36, 980-989.
[34] [王澄海, 张晟宁, 张飞民, 李课臣, 杨凯 (2021). 论全球变暖背景下中国西北地区降水增加问题. 地球科学进展, 36, 980-989.]
[35] Wang CT, Wang QJ, Shen ZX, Peng HC, Li HY (2003). A preliminary study of the effect of simulated precipitation on an alpine Kobresia humilis meadow. Acta Prataculturae Sinica, 12(2), 25-29.
[35] [王长庭, 王启基, 沈振西, 彭红春, 李海英 (2003). 模拟降水对高寒矮嵩草草甸群落影响的初步研究. 草业学报, 12(2), 25-29.]
[36] Wang LJ, Wang P, Sheng MY (2018). Stoichiometric characteristics of soil nutrient elements and its influencing factors in typical karst rocky desertification ecosystems, Southwest China. Acta Ecologica Sinica, 38, 6580-6593.
[36] [王霖娇, 汪攀, 盛茂银 (2018). 西南喀斯特典型石漠化生态系统土壤养分生态化学计量特征及其影响因素. 生态学报, 38, 6580-6593.]
[37] Wang LL (2016). Dynamic of Ecological Environment of Fenced Grassland and Its Management in Yanchi County. PhD dissertation, Beijing Forestry University, Beijing.
[37] [王黎黎 (2016). 盐池县封育条件下草地生态环境演变态势及草场管理. 博士学位论文, 北京林业大学, 北京.]
[38] Wang YH, Wang ZW, Pan ZL, Yan BL, Han MQ, Kang J, Han GD (2018). Effects of stocking rate and simulated precipitation on the plant diversity of desert steppe. Chinese Journal of Grassland, 40(2), 89-94.
[38] [王悦骅, 王忠武, 潘占磊, 闫宝龙, 韩梦琪, 康静, 韩国栋 (2018). 载畜率和模拟降水对荒漠草原植物物种多样性的影响. 中国草地学报, 40(2), 89-94.]
[39] Wei JM, Jiang Y, Fu MM, Zhang YG, Xu ZW (2011). Effects of water addition and fertilization on soil nutrient contents and pH value of typical grassland in Inner Mongolia. Chinese Journal of Ecology, 30, 1642-1646.
[39] [魏金明, 姜勇, 符明明, 张玉革, 徐柱文 (2011). 水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响. 生态学杂志, 30, 1642-1646.]
[40] Wu ZT, Dijkstra P, Koch GW, Pe?uelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942.
[41] Yang CY, Li EG, Chen HY, Zhang JH, Huang YM (2017). Biodiversity of natural vegetation and influencing factors in western Inner Mongolia. Biodiversity Science, 25, 1303-1312.
[41] [杨崇曜, 李恩贵, 陈慧颖, 张景慧, 黄永梅 (2017). 内蒙古西部自然植被的物种多样性及其影响因素. 生物多样性, 25, 1303-1312.]
[42] Yang Y, Zhang N, Jiang LL, Chen KL (2021). Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in Bird Island of Qinghai Lake on the Tibetan Plateau. Acta Agrestia Sinica, 29, 1043-1052.
[42] [杨阳, 章妮, 蒋莉莉, 陈克龙 (2021). 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应. 草地学报, 29, 1043-1052.]
[43] Yao XY, Zhang MJ, Zhang Y, Wang JX, Xiao HY (2022). New understanding of climate transition in northwest China. Arid Land Geography, 45, 671-683.
[43] [姚旭阳, 张明军, 张宇, 王家鑫, 肖涵余 (2022). 中国西北地区气候转型的新认识. 干旱区地理, 45, 671-683.]
[44] Zhang LM, Liu XP, Zhao XY, Zhang TH, Yue XF, Yun JY (2014). Response of sandy vegetation characteristics to precipitation change in Horqin Sandy Land. Acta Ecologica Sinica, 34, 2737-2745.
[44] [张腊梅, 刘新平, 赵学勇, 张铜会, 岳祥飞, 云建英 (2014). 科尔沁固定沙地植被特征对降雨变化的响应. 生态学报, 34, 2737-2745.]
[45] Zhang RY, Schellenberg MP, Tian DS, Ma FF, Zhang TY, Wang H, Wu Q, Bai YT, Han GD, Niu SL (2021a). Shifting community composition determines the biodiversity-productivity relationship under increasing precipitation and N deposition. Journal of Vegetation Science, 32, e12998. DOI: 10.1111/jvs12998.
[46] Zhang Y, Xie YZ, Ma HB, Zhang J, Jing L, Wang YT, Li JP (2021b). The influence of climate warming and humidity on plant diversity and soil bacteria and fungi diversity in desert grassland. Plants, 10, 2580. DOI: 10.3390/ plants10122580.
[47] Zhong MX, Song J, Zhou ZX, Ru JY, Zheng MM, Li Y, Hui DF, Wan SQ (2019). Asymmetric responses of plant community structure and composition to precipitation variabilities in a semi-arid steppe. Oecologia, 191, 697-708.
[48] Zhu GD, Guo N, Han YJ, Lv GY, Wang ZY, Wang CJ (2021). Effects of extreme drought on plant diversity and soil properties of Inner Mongolian desert steppe. Chinese Journal of Grassland, 43(3), 52-59.
[48] [朱国栋, 郭娜, 韩勇军, 吕广一, 王占义, 王成杰 (2021). 极端干旱对内蒙古荒漠草原植物群落物种多样性和土壤性质的影响. 中国草地学报, 43(3), 52-59.]
[49] Zhu WW, Wang P, Xu YX, Li CH, Yu HL, Huang JY (2021). Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition. Chinese Journal of Plant Ecology, 45, 309-320.
[49] [朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹 (2021). 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素. 植物生态学报, 45, 309-320.]
[50] Zuo XA, Cheng H, Zhao SL, Yue P, Liu XP, Wang SK, Liu LX, Xu C, Luo WT, Knops JMH, Medina-Roldán E (2020). Observational and experimental evidence for the effect of altered precipitation on desert and steppe communities. Global Ecology and Conservation, 21, e00864. DOI: 10.1016/j.gecco.2019.e00864.
文章导航

/

[an error occurred while processing this directive]