[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

云南省生态系统碳汇及其对碳中和的贡献

  • 黄玫 ,
  • 石岳 ,
  • 孙文娟 ,
  • 赵霞 ,
  • 常锦峰 ,
  • 方精云
展开
  • 1中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101
    2中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    3浙江大学环境与资源学院, 杭州 310058
    4北京大学城市与环境学院, 北京大学生态研究中心, 地表过程分析与模拟教育部重点实验室, 北京 100871
    5云南大学生态与环境学院, 昆明 650500

收稿日期: 2023-05-18

  录用日期: 2023-08-03

  网络出版日期: 2023-08-11

基金资助

云南省科技计划项目(202303AC100009);云南省基础研究专项重大项目(202101BC070002)

Terrestrial carbon sink in Yunnan Province and its contribution to carbon neutrality

  • HUANG Mei ,
  • SHI Yue ,
  • SUN Wen-Juan ,
  • ZHAO Xia ,
  • CHANG Jin-Feng ,
  • FANG Jing-Yun
Expand
  • 1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
    4Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
    5School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China

Received date: 2023-05-18

  Accepted date: 2023-08-03

  Online published: 2023-08-11

Supported by

Science and Technology Program of Yunnan Province(202303AC100009);Yunnan Fundamental Research Project(202101BC070002)

摘要

研究区域生态系统碳汇特征对指导地方政府实现“双碳”目标具有重要意义。该研究基于云南省生态系统的实测数据和各类统计数据, 全面评估了云南省1981-2020年陆地生态系统碳汇、碳排放以及碳汇对碳中和的贡献, 并研究了清洁能源生产和未来气候变化对云南省碳源汇的影响。评估结果显示, 云南省过去40年陆地生态系统碳汇在12.41-31.22 Tg C·a-1之间变化, 平均为19.41 Tg C·a-1。1981-2020年期间, 云南省生态系统碳汇贡献指数(生态系统碳汇与碳排放之比的百分数)最大值(247%)出现在1981-1985年, 此后持续下降, 2006-2010年至最小值后回升, 2016-2020年该指数为54%。2010年以来, 云南省清洁能源生产规模加大、森林面积增加以及能源强度降低对碳汇贡献指数的回升起到了重要作用。云南省清洁能源的大规模生产在一定程度上满足了经济发展对能源的需求, 使得其经济发展对CO2排放依赖程度有所下降。模型估算结果显示, 在未来RCP4.5和RCP8.5情景下, 云南省2020s-2030s的净生态系统生产力可能低于2016-2020年间的水平; 但在2040s-2050s时段可能有所上升。该研究建议, 云南省未来应当进一步发展清洁能源并继续推行节能增效减排, 同时进一步增强生态系统碳汇功能, 以推动“双碳”目标和区域高质量发展的实现。

本文引用格式

黄玫 , 石岳 , 孙文娟 , 赵霞 , 常锦峰 , 方精云 . 云南省生态系统碳汇及其对碳中和的贡献[J]. 植物生态学报, 2024 , 48(10) : 1243 -1255 . DOI: 10.17521/cjpe.2023.0139

Abstract

Aims Exploring the characteristics of carbon source-sink has significant implications for guiding local governments in achieving its “dual carbon” goal. This study comprehensively assessed the dynamics of carbon emissions, terrestrial carbon sinks, the contribution of terrestrial carbon sinks in offsetting carbon emissions, and the impacts of clean energy production on the carbon emissions in Yunnan Province from 1981 to 2020, and further investigated the terrestrial carbon balance in the next four decades projected by coupled model intercomparison project phase 5 (CMIP5) earth system models under two climate scenarios.

Methods Two independent methods were used to estimate historical ecosystem carbon sinks in Yunnan Province. One was based on field observation data combined with empirical models, and the other was based on four terrestrial ecosystem models. The projections of future carbon balance in Yunnan Province were derived from five earth system models of CMIP5 under two scenarios (RCP4.5 and RCP8.5). Carbon emissions were estimated using the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories, and China’s Provincial Guidelines for Greenhouse Gas Emission Inventory.

Important findings The results show that the terrestrial carbon sink in Yunnan Province varied between 12.41 and 31.22 Tg C·a-1 over the past 40 years, with an average sink of 19.41 Tg C·a-1. The highest ratio (247%) of ecosystem carbon sinks to carbon emissions (sink emission ratio) in Yunnan Province occurred during the period from 1981 to 1985, while the ratio has declined since then and reached its lowest value during the period of 2006-2010 followed by a slight increase after that. The ratio was 54% during the period of 2016-2020. The rise of the sink emission ratio in the past decade can be mainly attributed to the promotion of clean energy production, the increase in forest area, and the decrease in energy intensity. Large-scale deployment of clean energy in Yunnan Province has in general satisfied the energy needs of economic development, reducing the reliance of its economy on CO2 emissions. Model projections indicated that under future climate change scenarios (RCP4.5 and RCP8.5), the net ecosystem productivity (NEP) in Yunnan Province during the 2020s and the 2030s may be lower than that during 2016-2020, while carbon sink may increase in the 2040s to 2050s. This study suggests that in the future, Yunnan Province should further develop clean energy programs, increase energy efficiency, and enhance ecosystem carbon sink to support both the achievement of carbon neutrality and regional high-quality development.

[an error occurred while processing this directive]

参考文献

[1] Bontemps S, Defourny P, Radoux J, van Bogaert E, Lamarche C, Achard F, Mayaux P, Boettcher M, Brockmann C, Kirches G, Zulkhe M, Kalogirou V, Seifert F, Arino O (2013). Consistent global land cover maps for climate modelling communities:current achievements of the ESA’ land cover CCI. Proceedings of the ESA Living Planet Symposium. 9-13. Edinburgh, UK.
[2] Cai BR (2016). Research on the coordinated development of clean energy in Yunnan Province. Yunnan Water Power, 32(3), 134-137.
  [ 蔡葆锐 (2016). 云南省清洁能源协调发展问题研究. 云南水力发电, 32(3), 134-137.]
[3] Cao C, Hou ZM, Xiong Y, Luo JS, Fang YL, Sun W, Liao JX (2022). Technical routes and action plan for carbon neutral for Yunnan Province. Advanced Engineering Sciences, 54(1), 37-46.
  [ 曹成, 侯正猛, 熊鹰, 罗佳顺, 方琰藜, 孙伟, 廖建兴 (2022). 云南省碳中和技术路线与行动方案. 工程科学与技术, 54(1), 37-46.]
[4] Cao MK, Zhang QF, Shugart HH (2001). Dynamic responses of African ecosystem carbon cycling to climate change. Climate Research, 17, 183-193.
[5] Chang J, Ciais P, Gasser T, Smith P, Herrero M, Havlík P, Obersteiner M, Guenet B, Goll DS, Li W, Naipal V, Peng S, Qiu C, Tian H, Viovy N, et al. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 12, 118. DOI: 10.1038/s41467-020-20406-7.
[6] Chen JM (2021). Carbon neutrality: toward a sustainable future. Innovation, 2, 100127. DOI: 10.1016/j.xinn.2021.1001272.
[7] Chen J, Ju W, Ciais P, Viovy N, Liu R, Liu Y, Lu X (2019). Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 10, 4259. DOI: 10.1038/s41467-019-12257-8.
[8] Deng MX, Li W, Hu Y (2016). Decomposing industrial energy-related CO2 emissions in Yunnan Province, China: switching to low-carbon economic growth. Energies, 9, 23. DOI: 10.3390/en9010023.
[9] Eggelston S, Leandro B, Kyoko M, Todd N, Kiyoto T (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the IPCC, Kanagawa, Japan.
[10] Fang JY (2021). Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 45, 1173-1176.
  [ 方精云 (2021). 碳中和的生态学透视. 植物生态学报, 45, 1173-1176.]
[11] Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
[12] Fang J, Yu G, Liu L, Hu S, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020.
[13] Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Peters Glen P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell JG, Ciais P, Jackson RB, Alin S, et al. (2020). Global Carbon Budget 2020. Earth System Science Data, 12, 3269-3340.
[14] Geng Y, Zhu R, Maimaituerxun M (2022). Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 29, 76668-76686.
[15] Gu FX, Tao B, Wen XF, Yu GR, Li KR (2010). Modeling long-term changes in carbon fluxes and storage in a subtropical coniferous plantation based on CEVSA2 model. Acta Ecologica Sinica, 30, 6598-6605.
  [ 顾峰雪, 陶波, 温学发, 于贵瑞, 李克让 (2010). 基于CEVSA2模型的亚热带人工针叶林长期碳通量及碳储量模拟. 生态学报, 30, 6598-6605.]
[16] Guimberteau M, Zhu D, Maignan F, Huang Y, Yue C, Dantec-Nédélec S, Ottle C, Jornet-Puig A, Bastos A, Laurent P, Goll D, Bowring S, Chang JF, Guenet B, Tifafi M, et al. (2018). ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geoscientific Model Development, 11, 121-163.
[17] Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China: Life Sciences, 56, 661-671.
[18] Huang M, Ji JJ, Li KR, Liu YF, Yang FT, Tao B (2007). The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China. Tellus B: Chemical and Physical Meteorology, 59, 439-448.
[19] Huang Y, Yu YQ, Zhang W, Sun WJ, Liu SL, Jiang J, Wu JS, Yu WT, Wang Y, Yang ZF (2009). Agro-C: a biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 149, 106-129.
[20] IPCC Intergovernmental Panel on Climate Change (2023). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[21] Ji JJ, Huang M, Li KR (2008). Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Science in China Series D: Earth Sciences, 51, 885-898.
[22] Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015. DOI: 10.1029/2003GB002199.
[23] Lange S, Mengel M, Treu S, Büchner M (2022). ISIMIP3a atmospheric climate input data (v1.0). ISIMIP Repository. [2023-05-01]. DOI: 10.48364/ISIMIP.982724.
[24] Li LH, Zhang Y, Zhou TJ, Wang KC, Wang C, Wang T, Yuan LW, An KX, Zhou CH, Lü GN (2022). Mitigation of China’s carbon neutrality to global warming. Nature Communications, 13, 5315. DOI: 10.1038/s41467-022-33047-9.
[25] Liu J, Chen JM, Cihlar J, Chen W (1999). Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. Journal of Geophysical Research: Atmospheres, 104, 27735-27754.
[26] Liu Z, Deng Z, He G, Wang HL, Zhang X, Lin J, Qi Y, Liang X (2021). Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 3, 141-155.
[27] Lu WZ, Xiao JF, Liu F, Zhang Y, Liu CA, Lin GH (2017). Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data. Global Change Biology, 23, 1180-1198.
[28] Luo YJ, Wang XK, Zhang XQ, Lu F (2013). A Study on the Biomass and Allocation of Forest Ecosystems in China. China Forestry Publishing House, Beijing.
  [ 罗云建, 王效科, 张小全, 逯非 (2013). 中国森林生态系统生物量及其分配研究. 中国林业出版社, 北京.]
[29] Matsushita B, Tamura M (2002). Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sensing of Environment, 81, 58-66.
[30] Mayaux P, Bartholomé E, Fritz S, Belward A (2004). A new land-cover map of Africa for the year 2000. Journal of Biogeography, 31, 861-877.
[31] National Development and Reform Commission (2011). Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (for Trial Implementation). National Development and Reform Commission, Beijing.
  [ 国家发改委 (2011). 省级温室气体清单编制指南(试行). 国家发改委, 北京.]
[32] Pei YH, Li J (2012). Carbon storage of forest vegetation in Yunnan Province and its dynamic change in recent 10 years. Science of Soil and Water Conservation, 10(3), 93-98.
  [ 裴艳辉, 李江 (2012). 云南省森林植被碳储量及其近10年动态变化. 中国水土保持科学, 10(3), 93-98.]
[33] Peng S, Ciais P, Maignan F, Li W, Chang J, Wang T, Yue C (2017). Sensitivity of land use change emission estimates to historical land use and land cover mapping. Global Biogeochemical Cycles, 31, 626-643.
[34] Piao SL, Yue C, Ding JZ, Guo ZT (2022). Perspectives on the role of terrestrial ecosystems in the “carbon neutrality” strategy. Science China Earth Sciences, 65, 1178-1186.
[35] Poulter B, Ciais P, Hodson E, Lischke H, Maignan F, Plummer S, Zimmermann NE (2011). Plant functional type mapping for earth system models. Geoscientific Model Development, 4, 993-1010.
[36] Poulter B, MacBean N, Hartley A, Khlystova I, Arino O, Betts R, Bontemps S, Boettcher M, Brockmann C, Defourny P, Hagemann S, Herold M, Kirches G, Lamarche C, Lederer D, et al. (2015). Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geoscientific Model Development, 8, 2315-2328.
[37] Sprintsin M, Chen J, Desai A, Gough CM (2012). Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. Journal of Geophysical Research: Biogeosciences, 117, G01023. DOI: 10.1029/2010JG001407.
[38] Tang XL, Zhao X, Bai YF, Tang ZY, Wang WT, Zhao YC, Wan HW, Xie ZQ, Shi XZ, Wu BF, Wang GX, Yan JH, Ma KP, Du S, Li SG, et al. (2018). Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 115, 4021-4026.
[39] Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013). Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10, 1717-1736.
[40] Viovy N (2018). CRUNCEP Version 7—Atmospheric forcing data for the community land model. research data archive at the national center for atmospheric research, computational and information systems laboratory. [2023-05-18]. DOI: 10.5065/PZ8F-F017.
[41] Wang Q, Tenhunen J, Falge E, Bernhofer C, Granier A, Vesala T (2004). Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Global Change Biology, 10, 37-51.
[42] Wu BF, Yuan QZ, Yan CZ, Wang ZM, Yu XF, Li AN, Ma RH, Huang JL, Chen JS, Chang C, Liu CL, Zhang L, Li XS, Zeng Y, Bao AM (2014). Land cover changes of China from 2000 to 2010. Quaternary Sciences, 34, 723-731.
  [ 吴炳方, 苑全治, 颜长珍, 王宗明, 于信芳, 李爱农, 马荣华, 黄进良, 陈劲松, 常存, 刘成林, 张磊, 李晓松, 曾源, 包安明 (2014). 21世纪前十年的中国土地覆盖变化. 第四纪研究, 34, 723-731.]
[43] Yang Y, Huang GS, Wang XJ, Su HR, Zhi CG (2017). Research on prediction of forest resources and the carbon sequestration potential in Yunnan Province. Forest Resources Management, (4), 44-49.
  [ 杨英, 黄国胜, 王雪军, 苏浩然, 智长贵 (2017). 云南省森林资源预测及其碳汇潜力研究. 林业资源管理, (4), 44-49.]
[44] Yue C, Ciais P, Cadule P, Thonicke K, Archibald S, Poulter B, Hao WM, Hantson S, Mouillot F, Friedlingstein P, Maignan F, Viovy N (2014). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 7, 2747-2767.
[45] Zhang LL, Ling J, Lin MW (2023). Carbon neutrality: a comprehensive bibliometric analysis. Environmental Science and Pollution Research, 30, 45498-45514.
[46] Zhou R, Li W, Zhang Y, Peng M, Wang C, Sha L, Liu Y, Song Q, Fei X, Jin Y, Gao J, Lin Y, Grace J, Wang S (2018). Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan Province. Forests, 9, 227. DOI: 10.3390/f9050227.
[47] Zhou RW, Peng MC, Zhang YP (2017). The simulation research of carbon storage and sequestration potential of main forest vegetation in Yunnan Province. Journal of Yunnan University (Natural Sciences Edition), 39, 1089-1103.
  [ 周瑞伍, 彭明春, 张一平 (2017). 云南主要森林植被碳储量及固碳潜力模拟研究. 云南大学学报(自然科学版), 39, 1089-1103.]
[48] Zhu Y, Wang XF, Fan LZ, Yang PW, Yang XP, Huang W (2013). Wind Energy Resources and Their Development and Utilization in Yunnan Province. China Meteorological Press, Beijing.
  [ 朱勇, 王学锋, 范立张, 杨鹏武, 杨晓鹏, 黄玮 (2013). 云南省风能资源及其开发利用. 气象出版社, 北京.]
[49] Zou CN, Xue HQ, Xiong B, Zhang GS, Pan SQ, Jia CY, Wang Y, Ma F, Sun Q, Guan CX, Lin MJ (2021). Connotation, innovation and vision of “carbon neutrality”. Natural Gas Industry B, 8, 523-537.
文章导航

/

[an error occurred while processing this directive]