植物生态学报 ›› 2024, Vol. 48 ›› Issue (10): 1243-1255.DOI: 10.17521/cjpe.2023.0139 cstr: 32100.14.cjpe.2023.0139
所属专题: 碳循环
• 研究论文 • 下一篇
黄玫1, 石岳2, 孙文娟2, 赵霞2, 常锦峰3, 方精云4,5,*()
收稿日期:
2023-05-18
接受日期:
2023-08-03
出版日期:
2024-10-20
发布日期:
2024-12-03
通讯作者:
方精云
基金资助:
HUANG Mei1, SHI Yue2, SUN Wen-Juan2, ZHAO Xia2, CHANG Jin-Feng3, FANG Jing-Yun4,5,*()
Received:
2023-05-18
Accepted:
2023-08-03
Online:
2024-10-20
Published:
2024-12-03
Contact:
FANG Jing-Yun
Supported by:
摘要:
研究区域生态系统碳汇特征对指导地方政府实现“双碳”目标具有重要意义。该研究基于云南省生态系统的实测数据和各类统计数据, 全面评估了云南省1981-2020年陆地生态系统碳汇、碳排放以及碳汇对碳中和的贡献, 并研究了清洁能源生产和未来气候变化对云南省碳源汇的影响。评估结果显示, 云南省过去40年陆地生态系统碳汇在12.41-31.22 Tg C·a-1之间变化, 平均为19.41 Tg C·a-1。1981-2020年期间, 云南省生态系统碳汇贡献指数(生态系统碳汇与碳排放之比的百分数)最大值(247%)出现在1981-1985年, 此后持续下降, 2006-2010年至最小值后回升, 2016-2020年该指数为54%。2010年以来, 云南省清洁能源生产规模加大、森林面积增加以及能源强度降低对碳汇贡献指数的回升起到了重要作用。云南省清洁能源的大规模生产在一定程度上满足了经济发展对能源的需求, 使得其经济发展对CO2排放依赖程度有所下降。模型估算结果显示, 在未来RCP4.5和RCP8.5情景下, 云南省2020s-2030s的净生态系统生产力可能低于2016-2020年间的水平; 但在2040s-2050s时段可能有所上升。该研究建议, 云南省未来应当进一步发展清洁能源并继续推行节能增效减排, 同时进一步增强生态系统碳汇功能, 以推动“双碳”目标和区域高质量发展的实现。
黄玫, 石岳, 孙文娟, 赵霞, 常锦峰, 方精云. 云南省生态系统碳汇及其对碳中和的贡献. 植物生态学报, 2024, 48(10): 1243-1255. DOI: 10.17521/cjpe.2023.0139
HUANG Mei, SHI Yue, SUN Wen-Juan, ZHAO Xia, CHANG Jin-Feng, FANG Jing-Yun. Terrestrial carbon sink in Yunnan Province and its contribution to carbon neutrality. Chinese Journal of Plant Ecology, 2024, 48(10): 1243-1255. DOI: 10.17521/cjpe.2023.0139
参数 Parameter | 数值 Value | 来源 Source |
---|---|---|
排放系数 Emissions coefficient | ||
煤炭 Coal | 0.094 6 kg CO2·MJ-1 | Eggelston ( |
石油 Petroleum | 0.073 3 kg CO2·MJ-1 | Eggelston ( |
天然气 Natural gas | 0.0561 kg CO2·MJ-1 | Eggelston ( |
水泥 Cement | 0.538 kg CO2·kg-1 clinker | 国家发改委 NDRC ( |
氧化系数 Oxidation coefficient | ||
煤炭 Coal | 0.94 | 国家发改委 NDRC ( |
石油 Petroleum1) | 0.98 | 国家发改委 NDRC ( |
天然气 Gas | 0.99 | 国家发改委 NDRC ( |
水泥熟料比例 Cement clinker proportion | 59%-63% | 《中国水泥年鉴(2015)》 China Cement Almanac (2015) |
表1 碳排放计算的主要参数
Table 1 Key parameters for carbon emission calculation
参数 Parameter | 数值 Value | 来源 Source |
---|---|---|
排放系数 Emissions coefficient | ||
煤炭 Coal | 0.094 6 kg CO2·MJ-1 | Eggelston ( |
石油 Petroleum | 0.073 3 kg CO2·MJ-1 | Eggelston ( |
天然气 Natural gas | 0.0561 kg CO2·MJ-1 | Eggelston ( |
水泥 Cement | 0.538 kg CO2·kg-1 clinker | 国家发改委 NDRC ( |
氧化系数 Oxidation coefficient | ||
煤炭 Coal | 0.94 | 国家发改委 NDRC ( |
石油 Petroleum1) | 0.98 | 国家发改委 NDRC ( |
天然气 Gas | 0.99 | 国家发改委 NDRC ( |
水泥熟料比例 Cement clinker proportion | 59%-63% | 《中国水泥年鉴(2015)》 China Cement Almanac (2015) |
类型 Type | 年代 Time period | |||
---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | |
森林 Forest | 10.73 | 11.45 | 14.15 | 16.12 |
其他林地 Other forested land | ||||
果树林 Orchard | 0.09 | 0.23 | 0.49 | 0.84 |
其他经济林 Other commercial forests | 0.50 | 0.59 | 1.02 | 1.45 |
竹林 Bamboo forest | 0.14 | 0.12 | 0.09 | 0.11 |
灌丛 Shrubland | 6.87 | 5.44 | 5.04 | 4.77 |
草地 Grassland | 8.37 | 8.08 | 4.93 | 1.97 |
农田 Farmland | 6.31 | 6.38 | 6.19 | 6.07 |
湿地 Wetland | 0.31 | 0.29 | 0.30 | 0.29 |
建设用地 Built-up area | 0.68 | 0.77 | 0.91 | 1.61 |
其他类型 Other categories | 4.27 | 4.92 | 5.15 | 5.04 |
总计 Total | 38.27 | 38.27 | 38.27 | 38.27 |
表2 1980s-2010s云南各生态系统及土地覆盖类型面积(106 hm2)
Table 2 Area (106 hm2) of various ecosystems and land cover types in Yunnan during the 1980s-2010s
类型 Type | 年代 Time period | |||
---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | |
森林 Forest | 10.73 | 11.45 | 14.15 | 16.12 |
其他林地 Other forested land | ||||
果树林 Orchard | 0.09 | 0.23 | 0.49 | 0.84 |
其他经济林 Other commercial forests | 0.50 | 0.59 | 1.02 | 1.45 |
竹林 Bamboo forest | 0.14 | 0.12 | 0.09 | 0.11 |
灌丛 Shrubland | 6.87 | 5.44 | 5.04 | 4.77 |
草地 Grassland | 8.37 | 8.08 | 4.93 | 1.97 |
农田 Farmland | 6.31 | 6.38 | 6.19 | 6.07 |
湿地 Wetland | 0.31 | 0.29 | 0.30 | 0.29 |
建设用地 Built-up area | 0.68 | 0.77 | 0.91 | 1.61 |
其他类型 Other categories | 4.27 | 4.92 | 5.15 | 5.04 |
总计 Total | 38.27 | 38.27 | 38.27 | 38.27 |
类型 Type | 年份 Time period | ||||
---|---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | 1980s-2010s | |
森林 Forest | 8.40 | 14.52 | 13.75 | 29.29 | 16.49 |
灌丛 Shrubland | 0.41 | 0.30 | 0.60 | -0.26 | 0.26 |
草地 Grassland | 0.25 | 0.11 | 0.04 | -0.19 | 0.05 |
湿地 Wetland | 1.16 | 1.11 | 1.15 | 1.12 | 1.14 |
农田 Farmland | 2.19 | 1.59 | 0.82 | 1.26 | 1.47 |
合计 Total | 12.41 | 17.63 | 16.35 | 31.22 | 19.41 |
表3 1980s-2010s云南不同生态系统类型碳汇(Tg C·a-1)
Table 3 Carbon sink (Tg C·a-1) of various ecosystem types in Yunnan during the 1980s-2010s
类型 Type | 年份 Time period | ||||
---|---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | 1980s-2010s | |
森林 Forest | 8.40 | 14.52 | 13.75 | 29.29 | 16.49 |
灌丛 Shrubland | 0.41 | 0.30 | 0.60 | -0.26 | 0.26 |
草地 Grassland | 0.25 | 0.11 | 0.04 | -0.19 | 0.05 |
湿地 Wetland | 1.16 | 1.11 | 1.15 | 1.12 | 1.14 |
农田 Farmland | 2.19 | 1.59 | 0.82 | 1.26 | 1.47 |
合计 Total | 12.41 | 17.63 | 16.35 | 31.22 | 19.41 |
图1 基于地面观测资料估算的云南省生态系统碳汇和多模型预测的净生态系统生产力(NEP)总量。
Fig. 1 Total ecosystem carbon sink estimated based on field measurements and multi-model predictions of total net ecosystem productivity (NEP) in Yunnan Province.
图3 1981-2020年期间云南省生态碳汇贡献指数变化。CI, 区域碳汇贡献指数; CIe, 生态系统碳汇贡献指数。
Fig. 3 Changes in ecosystem carbon sink contribution index in Yunnan Province during the period of 1981-2020. CI, regional carbon sink contribution index; CIe, ecosystem carbon sink contribution index.
图4 云南省CO2排放量与GDP的关系、清洁能源减排及能源强度。A, 不同时段GDP与CO2排放量的关系, 此处GDP以1980年不变价格计量, 由定基GDP指数计算得到。B, 1980-2020年期间清洁能源CO2减排量、CO2排放量以及CO2排放量与清洁能源CO2减排量之和的变化。C, 1980-2020年期间能源强度的变化。
Fig. 4 Relationship between CO2 emission and GDP, clean energy emission reduction and energy intensity in Yunnan Province. A, Relationship between GDP and CO2 emissions in different time periods. GDP here is the GDP at the constant price of 1980. B, Variation of reduction in CO2 emissions through clean energy production, CO2 emissions, and the sum of CO2 emissions and reduction in CO2 emissions through clean energy production during 1980-2020. C, Changes of energy intensity during 1980-2020.
[1] | Bontemps S, Defourny P, Radoux J, van Bogaert E, Lamarche C, Achard F, Mayaux P, Boettcher M, Brockmann C, Kirches G, Zulkhe M, Kalogirou V, Seifert F, Arino O (2013). Consistent global land cover maps for climate modelling communities:current achievements of the ESA’ land cover CCI. Proceedings of the ESA Living Planet Symposium. 9-13. Edinburgh, UK. |
[2] | Cai BR (2016). Research on the coordinated development of clean energy in Yunnan Province. Yunnan Water Power, 32(3), 134-137. |
[ 蔡葆锐 (2016). 云南省清洁能源协调发展问题研究. 云南水力发电, 32(3), 134-137.] | |
[3] | Cao C, Hou ZM, Xiong Y, Luo JS, Fang YL, Sun W, Liao JX (2022). Technical routes and action plan for carbon neutral for Yunnan Province. Advanced Engineering Sciences, 54(1), 37-46. |
[ 曹成, 侯正猛, 熊鹰, 罗佳顺, 方琰藜, 孙伟, 廖建兴 (2022). 云南省碳中和技术路线与行动方案. 工程科学与技术, 54(1), 37-46.] | |
[4] | Cao MK, Zhang QF, Shugart HH (2001). Dynamic responses of African ecosystem carbon cycling to climate change. Climate Research, 17, 183-193. |
[5] |
Chang J, Ciais P, Gasser T, Smith P, Herrero M, Havlík P, Obersteiner M, Guenet B, Goll DS, Li W, Naipal V, Peng S, Qiu C, Tian H, Viovy N, et al. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 12, 118. DOI: 10.1038/s41467-020-20406-7.
PMID |
[6] | Chen JM (2021). Carbon neutrality: toward a sustainable future. Innovation, 2, 100127. DOI: 10.1016/j.xinn.2021.1001272. |
[7] |
Chen J, Ju W, Ciais P, Viovy N, Liu R, Liu Y, Lu X (2019). Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 10, 4259. DOI: 10.1038/s41467-019-12257-8.
PMID |
[8] | Deng MX, Li W, Hu Y (2016). Decomposing industrial energy-related CO2 emissions in Yunnan Province, China: switching to low-carbon economic growth. Energies, 9, 23. DOI: 10.3390/en9010023. |
[9] | Eggelston S, Leandro B, Kyoko M, Todd N, Kiyoto T (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the IPCC, Kanagawa, Japan. |
[10] | Fang JY (2021). Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 45, 1173-1176. |
[ 方精云 (2021). 碳中和的生态学透视. 植物生态学报, 45, 1173-1176.]
DOI |
|
[11] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI PMID |
[12] |
Fang J, Yu G, Liu L, Hu S, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020.
DOI PMID |
[13] |
Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Peters Glen P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell JG, Ciais P, Jackson RB, Alin S, et al. (2020). Global Carbon Budget 2020. Earth System Science Data, 12, 3269-3340.
DOI |
[14] | Geng Y, Zhu R, Maimaituerxun M (2022). Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 29, 76668-76686. |
[15] | Gu FX, Tao B, Wen XF, Yu GR, Li KR (2010). Modeling long-term changes in carbon fluxes and storage in a subtropical coniferous plantation based on CEVSA2 model. Acta Ecologica Sinica, 30, 6598-6605. |
[ 顾峰雪, 陶波, 温学发, 于贵瑞, 李克让 (2010). 基于CEVSA2模型的亚热带人工针叶林长期碳通量及碳储量模拟. 生态学报, 30, 6598-6605.] | |
[16] | Guimberteau M, Zhu D, Maignan F, Huang Y, Yue C, Dantec-Nédélec S, Ottle C, Jornet-Puig A, Bastos A, Laurent P, Goll D, Bowring S, Chang JF, Guenet B, Tifafi M, et al. (2018). ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geoscientific Model Development, 11, 121-163. |
[17] | Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China: Life Sciences, 56, 661-671. |
[18] | Huang M, Ji JJ, Li KR, Liu YF, Yang FT, Tao B (2007). The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China. Tellus B: Chemical and Physical Meteorology, 59, 439-448. |
[19] | Huang Y, Yu YQ, Zhang W, Sun WJ, Liu SL, Jiang J, Wu JS, Yu WT, Wang Y, Yang ZF (2009). Agro-C: a biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 149, 106-129. |
[20] | IPCC Intergovernmental Panel on Climate Change (2023). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[21] | Ji JJ, Huang M, Li KR (2008). Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Science in China Series D: Earth Sciences, 51, 885-898. |
[22] | Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015. DOI: 10.1029/2003GB002199. |
[23] | Lange S, Mengel M, Treu S, Büchner M (2022). ISIMIP3a atmospheric climate input data (v1.0). ISIMIP Repository. [2023-05-01]. DOI: 10.48364/ISIMIP.982724. |
[24] | Li LH, Zhang Y, Zhou TJ, Wang KC, Wang C, Wang T, Yuan LW, An KX, Zhou CH, Lü GN (2022). Mitigation of China’s carbon neutrality to global warming. Nature Communications, 13, 5315. DOI: 10.1038/s41467-022-33047-9. |
[25] | Liu J, Chen JM, Cihlar J, Chen W (1999). Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. Journal of Geophysical Research: Atmospheres, 104, 27735-27754. |
[26] | Liu Z, Deng Z, He G, Wang HL, Zhang X, Lin J, Qi Y, Liang X (2021). Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 3, 141-155. |
[27] | Lu WZ, Xiao JF, Liu F, Zhang Y, Liu CA, Lin GH (2017). Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data. Global Change Biology, 23, 1180-1198. |
[28] | Luo YJ, Wang XK, Zhang XQ, Lu F (2013). A Study on the Biomass and Allocation of Forest Ecosystems in China. China Forestry Publishing House, Beijing. |
[ 罗云建, 王效科, 张小全, 逯非 (2013). 中国森林生态系统生物量及其分配研究. 中国林业出版社, 北京.] | |
[29] | Matsushita B, Tamura M (2002). Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sensing of Environment, 81, 58-66. |
[30] | Mayaux P, Bartholomé E, Fritz S, Belward A (2004). A new land-cover map of Africa for the year 2000. Journal of Biogeography, 31, 861-877. |
[31] | National Development and Reform Commission (2011). Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (for Trial Implementation). National Development and Reform Commission, Beijing. |
[ 国家发改委 (2011). 省级温室气体清单编制指南(试行). 国家发改委, 北京.] | |
[32] | Pei YH, Li J (2012). Carbon storage of forest vegetation in Yunnan Province and its dynamic change in recent 10 years. Science of Soil and Water Conservation, 10(3), 93-98. |
[ 裴艳辉, 李江 (2012). 云南省森林植被碳储量及其近10年动态变化. 中国水土保持科学, 10(3), 93-98.] | |
[33] | Peng S, Ciais P, Maignan F, Li W, Chang J, Wang T, Yue C (2017). Sensitivity of land use change emission estimates to historical land use and land cover mapping. Global Biogeochemical Cycles, 31, 626-643. |
[34] | Piao SL, Yue C, Ding JZ, Guo ZT (2022). Perspectives on the role of terrestrial ecosystems in the “carbon neutrality” strategy. Science China Earth Sciences, 65, 1178-1186. |
[35] | Poulter B, Ciais P, Hodson E, Lischke H, Maignan F, Plummer S, Zimmermann NE (2011). Plant functional type mapping for earth system models. Geoscientific Model Development, 4, 993-1010. |
[36] | Poulter B, MacBean N, Hartley A, Khlystova I, Arino O, Betts R, Bontemps S, Boettcher M, Brockmann C, Defourny P, Hagemann S, Herold M, Kirches G, Lamarche C, Lederer D, et al. (2015). Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geoscientific Model Development, 8, 2315-2328. |
[37] | Sprintsin M, Chen J, Desai A, Gough CM (2012). Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. Journal of Geophysical Research: Biogeosciences, 117, G01023. DOI: 10.1029/2010JG001407. |
[38] | Tang XL, Zhao X, Bai YF, Tang ZY, Wang WT, Zhao YC, Wan HW, Xie ZQ, Shi XZ, Wu BF, Wang GX, Yan JH, Ma KP, Du S, Li SG, et al. (2018). Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 115, 4021-4026. |
[39] | Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013). Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10, 1717-1736. |
[40] | Viovy N (2018). CRUNCEP Version 7—Atmospheric forcing data for the community land model. research data archive at the national center for atmospheric research, computational and information systems laboratory. [2023-05-18]. DOI: 10.5065/PZ8F-F017. |
[41] | Wang Q, Tenhunen J, Falge E, Bernhofer C, Granier A, Vesala T (2004). Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Global Change Biology, 10, 37-51. |
[42] | Wu BF, Yuan QZ, Yan CZ, Wang ZM, Yu XF, Li AN, Ma RH, Huang JL, Chen JS, Chang C, Liu CL, Zhang L, Li XS, Zeng Y, Bao AM (2014). Land cover changes of China from 2000 to 2010. Quaternary Sciences, 34, 723-731. |
[ 吴炳方, 苑全治, 颜长珍, 王宗明, 于信芳, 李爱农, 马荣华, 黄进良, 陈劲松, 常存, 刘成林, 张磊, 李晓松, 曾源, 包安明 (2014). 21世纪前十年的中国土地覆盖变化. 第四纪研究, 34, 723-731.] | |
[43] | Yang Y, Huang GS, Wang XJ, Su HR, Zhi CG (2017). Research on prediction of forest resources and the carbon sequestration potential in Yunnan Province. Forest Resources Management, (4), 44-49. |
[ 杨英, 黄国胜, 王雪军, 苏浩然, 智长贵 (2017). 云南省森林资源预测及其碳汇潜力研究. 林业资源管理, (4), 44-49.] | |
[44] | Yue C, Ciais P, Cadule P, Thonicke K, Archibald S, Poulter B, Hao WM, Hantson S, Mouillot F, Friedlingstein P, Maignan F, Viovy N (2014). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 7, 2747-2767. |
[45] | Zhang LL, Ling J, Lin MW (2023). Carbon neutrality: a comprehensive bibliometric analysis. Environmental Science and Pollution Research, 30, 45498-45514. |
[46] | Zhou R, Li W, Zhang Y, Peng M, Wang C, Sha L, Liu Y, Song Q, Fei X, Jin Y, Gao J, Lin Y, Grace J, Wang S (2018). Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan Province. Forests, 9, 227. DOI: 10.3390/f9050227. |
[47] | Zhou RW, Peng MC, Zhang YP (2017). The simulation research of carbon storage and sequestration potential of main forest vegetation in Yunnan Province. Journal of Yunnan University (Natural Sciences Edition), 39, 1089-1103. |
[ 周瑞伍, 彭明春, 张一平 (2017). 云南主要森林植被碳储量及固碳潜力模拟研究. 云南大学学报(自然科学版), 39, 1089-1103.] | |
[48] | Zhu Y, Wang XF, Fan LZ, Yang PW, Yang XP, Huang W (2013). Wind Energy Resources and Their Development and Utilization in Yunnan Province. China Meteorological Press, Beijing. |
[ 朱勇, 王学锋, 范立张, 杨鹏武, 杨晓鹏, 黄玮 (2013). 云南省风能资源及其开发利用. 气象出版社, 北京.] | |
[49] | Zou CN, Xue HQ, Xiong B, Zhang GS, Pan SQ, Jia CY, Wang Y, Ma F, Sun Q, Guan CX, Lin MJ (2021). Connotation, innovation and vision of “carbon neutrality”. Natural Gas Industry B, 8, 523-537. |
[1] | 韩鹏宾 裴康迪 何斌 肖书礼 唐勤. 中国云南铁杉林的群落组成及特征[J]. 植物生态学报, 2025, 49(植被): 0-0. |
[2] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[3] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[4] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[5] | 张零念, 朱贵青, 杨宽, 刘星月, 巩合德, 郑丽. 滇中云南杨梅灌丛主要木本植物生态位与种间联结[J]. 植物生态学报, 2022, 46(11): 1400-1410. |
[6] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[7] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[8] | 方精云. 碳中和的生态学透视[J]. 植物生态学报, 2021, 45(11): 1173-1176. |
[9] | 白天道, 余春兰, 甘泽朝, 赖海荣, 杨隐超, 黄厚宸, 蒋维昕. 细叶云南松种实性状变异与地理气象因子的关联[J]. 植物生态学报, 2020, 44(12): 1224-1235. |
[10] | 申佳艳, 李帅锋, 黄小波, 雷志全, 施兴全, 苏建荣. 南盘江流域云南松径向生长对气候暖干化的响应[J]. 植物生态学报, 2019, 43(11): 946-958. |
[11] | 苏凯文, 陈路红, 郑伟, 潘瑶, 尹华军, 巩合德. 云南杨梅碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1): 136-146. |
[12] | 李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 陈曦, 宋亮, 武传胜. 亚热带森林系统4种附生蓝藻地衣的分布对生境变化的响应[J]. 植物生态学报, 2015, 39(3): 217-228. |
[13] | 李立, 杨佳妮, 崔凯, 李正红, 李根前, 廖声熙. 云南铁杉开花结实特性及其与环境因子的关系[J]. 植物生态学报, 2013, 37(9): 820-829. |
[14] | 梁冬, 毛建丰, 赵伟, 周先清, 袁虎威, 王黎明, 邢芳倩, 王晓茹, 李悦. 高山松及其亲本种群在油松生境下的苗期性状[J]. 植物生态学报, 2013, 37(2): 150-163. |
[15] | 胡海清, 魏书精, 孙龙. 1965-2010年大兴安岭森林火灾碳排放的估算研究[J]. 植物生态学报, 2012, 36(7): 629-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19