植物生态学报 ›› 2012, Vol. 36 ›› Issue (7): 629-644.DOI: 10.3724/SP.J.1258.2012.00629
所属专题: 碳循环
发布日期:
2012-07-10
通讯作者:
孙龙
作者简介:
E-mail: 15546460730@163.com
HU Hai-Qing, WEI Shu-Jing, SUN Long*()
Published:
2012-07-10
Contact:
SUN Long
摘要:
火干扰是森林生态系统的重要干扰因子, 是导致植被和土壤碳储量发生变化的重要原因。火干扰所排放的含碳气体对气候变化具有重要的影响。科学有效地对森林火灾所排放的碳进行计量, 对了解区域和全球的碳平衡及碳循环具有重要的意义。根据大兴安岭森林资源调查数据和1965-2010年森林火灾统计资料, 利用地理信息系统GIS (geographic information system)技术, 通过野外火烧迹地调查与室内控制环境实验相结合的方法确定各种计量参数, 从林分水平上, 采用排放因子法, 估算了大兴安岭1965-2010年46年间森林火灾所排放的碳和含碳气体量。结果表明: 大兴安岭46年间森林火灾排放的碳为2.93 × 10 7t, 年平均排放量为6.38 × 10 5t, 约占全国年均森林火灾碳排放量的5.64%; 含碳气体CO2、CO、CH4和非甲烷烃(NMHC)的排放量分别为1.02 × 108、9.41 × 10 6、5.41 × 10 5和2.11 × 10 5t, 含碳气体CO2、CO、CH4和NMHC的年均排放量分别为2.22 × 106、2.05 × 10 5、1.18 × 10 4和4.59 × 10 3t, 分别占全国年均森林火灾各含碳气体排放量的5.46%、7.56%、10.54%和4.06%; 针阔混交林燃烧效率较低, 虽然火烧面积占总过火面积的21.23%, 但排放的碳只占总排放量的7.81%, 为此提出了相应的林火管理策略。
胡海清, 魏书精, 孙龙. 1965-2010年大兴安岭森林火灾碳排放的估算研究. 植物生态学报, 2012, 36(7): 629-644. DOI: 10.3724/SP.J.1258.2012.00629
HU Hai-Qing, WEI Shu-Jing, SUN Long. Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010. Chinese Journal of Plant Ecology, 2012, 36(7): 629-644. DOI: 10.3724/SP.J.1258.2012.00629
火强度 Fire intensity | A | B | C | D | E | F | G | H | I | J | 总和 Total |
---|---|---|---|---|---|---|---|---|---|---|---|
轻度 Low | 139 088.51 | 103 206.63 | 108 332.62 | 14 655.73 | 148 847.25 | 33 451.00 | 11 590.70 | 18 953.80 | 29 381.92 | 448 761.26 | 1 056 269.42 |
中度 Medium | 185 451.35 | 147 438.05 | 64 999.56 | 58 622.91 | 59 538.90 | 100 353.00 | 11 590.70 | 37 907.61 | 29 381.92 | 224 380.63 | 919 664.63 |
重度 High | 602 716.86 | 44 231.40 | 259 998.28 | 73 278.65 | 89 308.35 | 89 202.65 | 92 725.69 | 132 676.63 | 88 145.75 | 74 793.54 | 1 547 077.81 |
总和 Total | 927 256.72 | 294 876.09 | 433 330.46 | 146 557.29 | 297 694.50 | 223 006.65 | 115 907.09 | 189 538.04 | 146 909.59 | 747 935.43 | 3 523 011.86 |
表1 大兴安岭1965-2010年各林型过火面积及火强度等级分布(hm2)
Table 1 Burned area and fire intensity grade distribution of different forest types of Daxing’an Mountains from 1965 to 2010 (hm2)
火强度 Fire intensity | A | B | C | D | E | F | G | H | I | J | 总和 Total |
---|---|---|---|---|---|---|---|---|---|---|---|
轻度 Low | 139 088.51 | 103 206.63 | 108 332.62 | 14 655.73 | 148 847.25 | 33 451.00 | 11 590.70 | 18 953.80 | 29 381.92 | 448 761.26 | 1 056 269.42 |
中度 Medium | 185 451.35 | 147 438.05 | 64 999.56 | 58 622.91 | 59 538.90 | 100 353.00 | 11 590.70 | 37 907.61 | 29 381.92 | 224 380.63 | 919 664.63 |
重度 High | 602 716.86 | 44 231.40 | 259 998.28 | 73 278.65 | 89 308.35 | 89 202.65 | 92 725.69 | 132 676.63 | 88 145.75 | 74 793.54 | 1 547 077.81 |
总和 Total | 927 256.72 | 294 876.09 | 433 330.46 | 146 557.29 | 297 694.50 | 223 006.65 | 115 907.09 | 189 538.04 | 146 909.59 | 747 935.43 | 3 523 011.86 |
图2 大兴安岭各林型各组分单位面积可燃物载量(平均值±标准偏差, t·hm-2)。A、B、C、D、E、F、G、H、I和J同表1。图中灌木、草本、枯枝落叶层的可燃物载量分别加上了10 t·hm-2。
Fig. 2 Fuel loading per unit area from each component of each forest type in Daxing’an Mountains (mean ± SD, t·hm-2) . A, B, C, D, E, F, G, H, I and J are the same as in Table 1. Fuel loading of shrubs, herbs, and litter were plus a 10 t·hm-2, respectively. CWD, coarse woody debris.
![]() |
表3 大兴安岭各林型不同组分的可燃物在不同火强度下的燃烧效率(平均值±标准偏差, %)
Table 3 Combustion efficiency of fuel of different components of forest types under different fire intensity in Daxing 'an Mountains (mean±SD, %)
![]() |
林型 Forest type | 火强度 Fire intensity | A | B | C | D | E | F | G | H | I | J |
---|---|---|---|---|---|---|---|---|---|---|---|
乔木 Tree | 轻度 Low | 1.149E+5 | 9.162E+4 | 3.011E+5 | 3.590E+4 | 2.030E+5 | 3.721E+4 | 2.241E+4 | 6.931E+4 | 6.034E+4 | 1.900E+5 |
中度 Medium | 8.426E+5 | 5.235E+5 | 3.097E+5 | 2.872E+5 | 1.624E+5 | 2.977E+5 | 3.486E+4 | 2.911E+5 | 1.282E+5 | 1.900E+5 | |
重度 High | 3.485E+6 | 2.749E+5 | 1.549E+6 | 4.488E+5 | 2.923E+5 | 3.307E+5 | 4.979E+5 | 1.504E+6 | 5.883E+5 | 1.583E+5 | |
灌木 Shrub | 轻度 Low | 2.583E+3 | 3.965E+3 | 1.561E+4 | 2.134E+3 | 2.690E+4 | 5.380E+1 | 6.758E+2 | 3.043E+3 | 8.239E+3 | 2.941E+4 |
中度 Medium | 4.919E+3 | 1.039E+4 | 1.472E+4 | 1.067E+4 | 1.480E+4 | 1.775E+3 | 9.762E+2 | 9.832E+3 | 1.154E+4 | 3.431E+4 | |
重度 High | 2.078E+4 | 3.965E +3 | 8.562E+4 | 2.001E+4 | 2.825E+4 | 1.865E+3 | 1.201E+4 | 4.589E+4 | 4.449E+4 | 1.634E+4 | |
草本 Herb | 轻度 Low | 1.491E+4 | 1.255E+5 | 1.380E+5 | 2.359E+3 | 2.777E+4 | 8.595E+2 | 1.527E+3 | 6.852E+3 | 4.009E+3 | 8.196E+4 |
中度 Medium | 3.225E+4 | 3.587E+5 | 1.882E+5 | 1.685E+4 | 2.170E+4 | 4.915E+3 | 2.563E+3 | 2.003E+4 | 6.581E+3 | 1.165E+5 | |
重度 High | 1.219E+5 | 1.170E+5 | 1.004E+6 | 2.808E+4 | 3.875E+4 | 7.162E+3 | 2.181E+4 | 7.380E+4 | 2.269E+4 | 7.189E+4 | |
枯枝落叶 Litter | 轻度 Low | 7.149E+4 | 4.398E+4 | 4.753E+3 | 5.310E+3 | 3.973E+4 | 1.641E+3 | 6.323E+3 | 2.586E+4 | 1.818E+4 | 2.398E+5 |
中度 Medium | 2.611E+4 | 9.599E+4 | 7.010E+3 | 3.152E+4 | 3.008E+4 | 7.303E+3 | 1.475E+4 | 8.221E+4 | 3.911E+4 | 2.264E+5 | |
重度 High | 1.347E+6 | 5.236E+4 | 4.753E+4 | 8.566E+4 | 8.514E+4 | 1.411E+4 | 1.405E+5 | 3.233E+5 | 1.653E+5 | 1.480E+5 | |
腐殖质 Duff | 轻度 Low | 9.575E+4 | 2.482E+4 | 4.954E+4 | 6.322E+3 | 7.256E+4 | 7.528E+3 | 1.790E+4 | 2.558E+4 | 2.276E+4 | 1.523E+5 |
中度 Medium | 2.437E+5 | 1.702E+5 | 5.319E+4 | 1.328E+5 | 6.772E+4 | 3.388E+4 | 2.983E+4 | 8.673E+4 | 4.418E+4 | 1.958E+5 | |
重度 High | 3.244E+6 | 1.808E+5 | 5.883E+5 | 2.964E+5 | 2.866E+5 | 8.747E+4 | 5.115E+5 | 7.083E+5 | 2.892E+5 | 2.284E+5 | |
粗木质残体 Coarse woody debris | 轻度 Low | 5.101E+4 | 2.447E+4 | 5.693E+4 | 8.321E+3 | 8.003E+4 | 3.374E+3 | 8.221E+3 | 8.458E+3 | 1.507E+4 | 7.192E+4 |
中度 Medium | 1.436E+5 | 6.991E+4 | 6.521E+4 | 5.991E+4 | 5.976E+4 | 2.362E+4 | 1.370E+4 | 3.625E+4 | 3.014E+4 | 9.889E+4 | |
重度 High | 8.350E+5 | 4.824E+4 | 5.093E+5 | 1.123E+6 | 1.184E+5 | 3.299E+4 | 1.315E+5 | 2.284E+5 | 1.469E+5 | 4.195E+4 | |
林分总碳排放 Total carbon emissions of forest stand | 1.067E+7 | 2.220E+6 | 4.987E+6 | 1.591E+6 | 1.656E+6 | 8.941E+5 | 1.469E+6 | 3.549E+6 | 1.645E+4 | 2.292E+6 |
表4 1965-2010年大兴安岭各林型不同组分的可燃物在不同火强度下的总碳排放量(t)
Table 4 Total carbon emissions of fuel of different components of different forest types under different fire intensity in Daxing’an Mountains during 1965-2010 (t)
林型 Forest type | 火强度 Fire intensity | A | B | C | D | E | F | G | H | I | J |
---|---|---|---|---|---|---|---|---|---|---|---|
乔木 Tree | 轻度 Low | 1.149E+5 | 9.162E+4 | 3.011E+5 | 3.590E+4 | 2.030E+5 | 3.721E+4 | 2.241E+4 | 6.931E+4 | 6.034E+4 | 1.900E+5 |
中度 Medium | 8.426E+5 | 5.235E+5 | 3.097E+5 | 2.872E+5 | 1.624E+5 | 2.977E+5 | 3.486E+4 | 2.911E+5 | 1.282E+5 | 1.900E+5 | |
重度 High | 3.485E+6 | 2.749E+5 | 1.549E+6 | 4.488E+5 | 2.923E+5 | 3.307E+5 | 4.979E+5 | 1.504E+6 | 5.883E+5 | 1.583E+5 | |
灌木 Shrub | 轻度 Low | 2.583E+3 | 3.965E+3 | 1.561E+4 | 2.134E+3 | 2.690E+4 | 5.380E+1 | 6.758E+2 | 3.043E+3 | 8.239E+3 | 2.941E+4 |
中度 Medium | 4.919E+3 | 1.039E+4 | 1.472E+4 | 1.067E+4 | 1.480E+4 | 1.775E+3 | 9.762E+2 | 9.832E+3 | 1.154E+4 | 3.431E+4 | |
重度 High | 2.078E+4 | 3.965E +3 | 8.562E+4 | 2.001E+4 | 2.825E+4 | 1.865E+3 | 1.201E+4 | 4.589E+4 | 4.449E+4 | 1.634E+4 | |
草本 Herb | 轻度 Low | 1.491E+4 | 1.255E+5 | 1.380E+5 | 2.359E+3 | 2.777E+4 | 8.595E+2 | 1.527E+3 | 6.852E+3 | 4.009E+3 | 8.196E+4 |
中度 Medium | 3.225E+4 | 3.587E+5 | 1.882E+5 | 1.685E+4 | 2.170E+4 | 4.915E+3 | 2.563E+3 | 2.003E+4 | 6.581E+3 | 1.165E+5 | |
重度 High | 1.219E+5 | 1.170E+5 | 1.004E+6 | 2.808E+4 | 3.875E+4 | 7.162E+3 | 2.181E+4 | 7.380E+4 | 2.269E+4 | 7.189E+4 | |
枯枝落叶 Litter | 轻度 Low | 7.149E+4 | 4.398E+4 | 4.753E+3 | 5.310E+3 | 3.973E+4 | 1.641E+3 | 6.323E+3 | 2.586E+4 | 1.818E+4 | 2.398E+5 |
中度 Medium | 2.611E+4 | 9.599E+4 | 7.010E+3 | 3.152E+4 | 3.008E+4 | 7.303E+3 | 1.475E+4 | 8.221E+4 | 3.911E+4 | 2.264E+5 | |
重度 High | 1.347E+6 | 5.236E+4 | 4.753E+4 | 8.566E+4 | 8.514E+4 | 1.411E+4 | 1.405E+5 | 3.233E+5 | 1.653E+5 | 1.480E+5 | |
腐殖质 Duff | 轻度 Low | 9.575E+4 | 2.482E+4 | 4.954E+4 | 6.322E+3 | 7.256E+4 | 7.528E+3 | 1.790E+4 | 2.558E+4 | 2.276E+4 | 1.523E+5 |
中度 Medium | 2.437E+5 | 1.702E+5 | 5.319E+4 | 1.328E+5 | 6.772E+4 | 3.388E+4 | 2.983E+4 | 8.673E+4 | 4.418E+4 | 1.958E+5 | |
重度 High | 3.244E+6 | 1.808E+5 | 5.883E+5 | 2.964E+5 | 2.866E+5 | 8.747E+4 | 5.115E+5 | 7.083E+5 | 2.892E+5 | 2.284E+5 | |
粗木质残体 Coarse woody debris | 轻度 Low | 5.101E+4 | 2.447E+4 | 5.693E+4 | 8.321E+3 | 8.003E+4 | 3.374E+3 | 8.221E+3 | 8.458E+3 | 1.507E+4 | 7.192E+4 |
中度 Medium | 1.436E+5 | 6.991E+4 | 6.521E+4 | 5.991E+4 | 5.976E+4 | 2.362E+4 | 1.370E+4 | 3.625E+4 | 3.014E+4 | 9.889E+4 | |
重度 High | 8.350E+5 | 4.824E+4 | 5.093E+5 | 1.123E+6 | 1.184E+5 | 3.299E+4 | 1.315E+5 | 2.284E+5 | 1.469E+5 | 4.195E+4 | |
林分总碳排放 Total carbon emissions of forest stand | 1.067E+7 | 2.220E+6 | 4.987E+6 | 1.591E+6 | 1.656E+6 | 8.941E+5 | 1.469E+6 | 3.549E+6 | 1.645E+4 | 2.292E+6 |
![]() |
表5 大兴安岭不同可燃物类型燃烧主要含碳气体的排放因子(平均值±标准偏差, g·kg-1 C)
Table 5 Emission factors for main carbonaceous gases emitted from various types of fuel burning in Daxing an Mountains (mean±SD, g·kg-1 C)
![]() |
林型 Forest type | 含碳气体类型 Carbonaceous gas type | A | B | C | D | E | F | G | H | I | J |
---|---|---|---|---|---|---|---|---|---|---|---|
乔木 Tree | CO2 | 1.346E+7 | 2.766E+6 | 6.843E+6 | 2.480E+6 | 1.975E+6 | 2.030E+6 | 1.848E+6 | 5.756E+6 | 2.586E+6 | 1.673E+6 |
CO | 1.570E+6 | 2.681E+5 | 8.524E+5 | 1.709E+5 | 1.623E+5 | 2.028E+5 | 1.370E+5 | 3.461E+5 | 1.471E+5 | 1.053E+5 | |
CH4 | 1.315E+5 | 1.700E+4 | 6.241E+4 | 2.154E+4 | 6.709E+3 | 2.582E+4 | 1.099E+4 | 3.561E+4 | 7.924E+3 | 1.001E+4 | |
NMHC | 2.799E+4 | 6.497E+3 | 1.620E+4 | 5.095E+3 | 4.275E+3 | 5.591E+3 | 3.997E+3 | 1.473E+4 | 5.904E+3 | 3.929E+3 | |
灌木 Shrub | CO2 | 9.566E+4 | 5.981E+4 | 3.884E+5 | 1.003E+5 | 2.304E+5 | 1.237E+4 | 4.519E+4 | 1.874E+5 | 2.003E+5 | 2.509E+5 |
CO | 5.934E+3 | 3.941E+3 | 2.013E+4 | 6.601E+3 | 1.359E+4 | 6.554E+2 | 2.396E+3 | 1.143E+4 | 1.319E+4 | 1.533E+4 | |
CH4 | 2.885E+2 | 4.194E+2 | 1.890E+3 | 3.052E+2 | 1.700E+3 | 5.246E+1 | 1.818E+2 | 6.053E+2 | 6.362E+2 | 1.449E+3 | |
NMHC | 2.150E+2 | 1.447E+2 | 9.856E+2 | 2.789E+2 | 4.826E+2 | 3.029E+1 | 1.243E+2 | 4.584E+2 | 5.591E+2 | 7.366 E+2 | |
草本 Herb | CO2 | 5.582E+5 | 2.079E+6 | 4.106E+6 | 1.570E+5 | 2.826 E+5 | 4.210E+4 | 7.814E+4 | 3.178E+5 | 1.047E+5 | 8.233E+5 |
CO | 3.714E+4 | 1.452E+5 | 4.594E+5 | 9.761E+3 | 2.315E+4 | 3.146E+3 | 7.520E+3 | 1.805E+4 | 6.797E+3 | 5.817E+4 | |
CH4 | 1.707E+3 | 4.990E+3 | 2.420E+4 | 8.465E+2 | 1.623E+3 | 2.122E+2 | 3.47E+2 | 1.732E+3 | 5.958E+2 | 2.351E+3 | |
NMHC | 9.974E+2 | 3.908E+3 | 1.011E+4 | 2.979E+2 | 7.410E+2 | 6.727E+1 | 1.684E+2 | 6.544E+2 | 2.297E+2 | 2.189E+3 | |
枯枝落叶 Litter | CO2 | 4.412E+6 | 6.061E+6 | 1.833E+5 | 3.974E+5 | 5.129E+5 | 7.270E+4 | 5.055E+5 | 1.362E+6 | 7.125E+5 | 1.852E+6 |
CO | 4.541E+5 | 6.787E+4 | 2.299E+4 | 5.293E+4 | 3.423E+4 | 5.616E+3 | 5.384E+4 | 9.244E+4 | 4.613E+4 | 2.280E+5 | |
CH4 | 2.340E+4 | 2.289E+3 | 6.640E+2 | 9.554E+2 | 3.858E+3 | 2.420E+2 | 2.213E+3 | 3.839E+3 | 2.159E+3 | 1.149E+4 | |
NMHC | 8.369E+3 | 9.809E+2 | 3.854E+2 | 7.594E+2 | 1.100E+3 | 1.983E+2 | 7.272E+2 | 2.804E+3 | 1.224E+3 | 4.606E+3 | |
腐殖质 Duff | CO2 | 1.087E+7 | 1.113E+6 | 2.150E+6 | 1.371E+6 | 1.432E+6 | 3.997E+5 | 1.758E+6 | 2.546E+6 | 1.131E+6 | 1.928E+6 |
CO | 1.515E+6 | 1.767E+5 | 2.989E+5 | 1.721E+5 | 1.111E+5 | 3.739E+4 | 1.602E+5 | 1.751E+5 | 9.049E+4 | 1.730E+5 | |
CH4 | 3.798E+4 | 4.322E+3 | 7.532E+3 | 4.529E+3 | 5.080E+3 | 1.495E+3 | 6.654E+3 | 7.714E+3 | 3.526E+3 | 6.744E+3 | |
NMHC | 2.007E+4 | 2.443E+3 | 4.077E+3 | 2.831E+3 | 2.945E+3 | 1.147E+3 | 4.250E+3 | 5.826E+3 | 2.778E+3 | 4.785E+3 | |
粗木质残体 Coarse woody debris | CO2 | 3.250E+6 | 4.360E+5 | 2.083E+6 | 5.641E+5 | 7.866E+5 | 1.865E+5 | 5.049E+5 | 9.060E+5 | 6.071E+5 | 6.179E+5 |
CO | 2.069E+5 | 2.998E+4 | 1.198E+5 | 4.054E+4 | 5.909E+4 | 1.312E+4 | 2.930E+4 | 5.041E+4 | 4.051E+4 | 5.010E+4 | |
CH4 | 8.649E+3 | 1.354E+3 | 5.114E+3 | 1.896E+3 | 2.815E+3 | 5.879E+2 | 1.335E+3 | 2.293E+3 | 1.883E+3 | 2.638E+3 | |
NMHC | 7.310E+3 | 9.270E+2 | 3.662E+3 | 1.156E+3 | 2.040E+3 | 4.859E+2 | 9.668E+2 | 1.830E+3 | 1.383E+3 | 1.851E+4 |
表6 大兴安岭1965-2010年各林型不同组分的可燃物燃烧所排放的主要含碳气体量(平均值±标准偏差, t)
Table 6 Main carbonaceous gases emission from the fuel burning of different components of different forest types in Daxing’an Mountains during 1965-2010 (mean ± SD, t)
林型 Forest type | 含碳气体类型 Carbonaceous gas type | A | B | C | D | E | F | G | H | I | J |
---|---|---|---|---|---|---|---|---|---|---|---|
乔木 Tree | CO2 | 1.346E+7 | 2.766E+6 | 6.843E+6 | 2.480E+6 | 1.975E+6 | 2.030E+6 | 1.848E+6 | 5.756E+6 | 2.586E+6 | 1.673E+6 |
CO | 1.570E+6 | 2.681E+5 | 8.524E+5 | 1.709E+5 | 1.623E+5 | 2.028E+5 | 1.370E+5 | 3.461E+5 | 1.471E+5 | 1.053E+5 | |
CH4 | 1.315E+5 | 1.700E+4 | 6.241E+4 | 2.154E+4 | 6.709E+3 | 2.582E+4 | 1.099E+4 | 3.561E+4 | 7.924E+3 | 1.001E+4 | |
NMHC | 2.799E+4 | 6.497E+3 | 1.620E+4 | 5.095E+3 | 4.275E+3 | 5.591E+3 | 3.997E+3 | 1.473E+4 | 5.904E+3 | 3.929E+3 | |
灌木 Shrub | CO2 | 9.566E+4 | 5.981E+4 | 3.884E+5 | 1.003E+5 | 2.304E+5 | 1.237E+4 | 4.519E+4 | 1.874E+5 | 2.003E+5 | 2.509E+5 |
CO | 5.934E+3 | 3.941E+3 | 2.013E+4 | 6.601E+3 | 1.359E+4 | 6.554E+2 | 2.396E+3 | 1.143E+4 | 1.319E+4 | 1.533E+4 | |
CH4 | 2.885E+2 | 4.194E+2 | 1.890E+3 | 3.052E+2 | 1.700E+3 | 5.246E+1 | 1.818E+2 | 6.053E+2 | 6.362E+2 | 1.449E+3 | |
NMHC | 2.150E+2 | 1.447E+2 | 9.856E+2 | 2.789E+2 | 4.826E+2 | 3.029E+1 | 1.243E+2 | 4.584E+2 | 5.591E+2 | 7.366 E+2 | |
草本 Herb | CO2 | 5.582E+5 | 2.079E+6 | 4.106E+6 | 1.570E+5 | 2.826 E+5 | 4.210E+4 | 7.814E+4 | 3.178E+5 | 1.047E+5 | 8.233E+5 |
CO | 3.714E+4 | 1.452E+5 | 4.594E+5 | 9.761E+3 | 2.315E+4 | 3.146E+3 | 7.520E+3 | 1.805E+4 | 6.797E+3 | 5.817E+4 | |
CH4 | 1.707E+3 | 4.990E+3 | 2.420E+4 | 8.465E+2 | 1.623E+3 | 2.122E+2 | 3.47E+2 | 1.732E+3 | 5.958E+2 | 2.351E+3 | |
NMHC | 9.974E+2 | 3.908E+3 | 1.011E+4 | 2.979E+2 | 7.410E+2 | 6.727E+1 | 1.684E+2 | 6.544E+2 | 2.297E+2 | 2.189E+3 | |
枯枝落叶 Litter | CO2 | 4.412E+6 | 6.061E+6 | 1.833E+5 | 3.974E+5 | 5.129E+5 | 7.270E+4 | 5.055E+5 | 1.362E+6 | 7.125E+5 | 1.852E+6 |
CO | 4.541E+5 | 6.787E+4 | 2.299E+4 | 5.293E+4 | 3.423E+4 | 5.616E+3 | 5.384E+4 | 9.244E+4 | 4.613E+4 | 2.280E+5 | |
CH4 | 2.340E+4 | 2.289E+3 | 6.640E+2 | 9.554E+2 | 3.858E+3 | 2.420E+2 | 2.213E+3 | 3.839E+3 | 2.159E+3 | 1.149E+4 | |
NMHC | 8.369E+3 | 9.809E+2 | 3.854E+2 | 7.594E+2 | 1.100E+3 | 1.983E+2 | 7.272E+2 | 2.804E+3 | 1.224E+3 | 4.606E+3 | |
腐殖质 Duff | CO2 | 1.087E+7 | 1.113E+6 | 2.150E+6 | 1.371E+6 | 1.432E+6 | 3.997E+5 | 1.758E+6 | 2.546E+6 | 1.131E+6 | 1.928E+6 |
CO | 1.515E+6 | 1.767E+5 | 2.989E+5 | 1.721E+5 | 1.111E+5 | 3.739E+4 | 1.602E+5 | 1.751E+5 | 9.049E+4 | 1.730E+5 | |
CH4 | 3.798E+4 | 4.322E+3 | 7.532E+3 | 4.529E+3 | 5.080E+3 | 1.495E+3 | 6.654E+3 | 7.714E+3 | 3.526E+3 | 6.744E+3 | |
NMHC | 2.007E+4 | 2.443E+3 | 4.077E+3 | 2.831E+3 | 2.945E+3 | 1.147E+3 | 4.250E+3 | 5.826E+3 | 2.778E+3 | 4.785E+3 | |
粗木质残体 Coarse woody debris | CO2 | 3.250E+6 | 4.360E+5 | 2.083E+6 | 5.641E+5 | 7.866E+5 | 1.865E+5 | 5.049E+5 | 9.060E+5 | 6.071E+5 | 6.179E+5 |
CO | 2.069E+5 | 2.998E+4 | 1.198E+5 | 4.054E+4 | 5.909E+4 | 1.312E+4 | 2.930E+4 | 5.041E+4 | 4.051E+4 | 5.010E+4 | |
CH4 | 8.649E+3 | 1.354E+3 | 5.114E+3 | 1.896E+3 | 2.815E+3 | 5.879E+2 | 1.335E+3 | 2.293E+3 | 1.883E+3 | 2.638E+3 | |
NMHC | 7.310E+3 | 9.270E+2 | 3.662E+3 | 1.156E+3 | 2.040E+3 | 4.859E+2 | 9.668E+2 | 1.830E+3 | 1.383E+3 | 1.851E+4 |
图3 大兴安岭1965-2010年各林型可燃物消耗所排放的含碳气体统计表。A、B、C、D、E、F、G、H、I和J同表1。图中CO的排放量扩大了10倍, CH4和非甲烷烃(NMHC)的排放量扩大了100倍。
Fig. 3 Main carbonaceous gases emission from the fuel burning of various forest types in Daxing’an Mountains during 1965-2010. A, B, C, D, E, F, G, H, I and J are the same as in Table 1. CO emission expands 10 times; CH4 and nonmethane hydrocarbon (NMHC) emissions expand 100 times.
[1] | Amiro BD, Todd JB, Wotton BM, Logan KA, Flannigan MD, Stocks BJ, Mason JA, Martell DL, Hirsch KG (2001). Direct carbon emissions from Canadian forest fires, 1959- 1999. Canadian Journal of Forest Research, 31, 512-525. |
[2] | Andreae MO, Merlet P (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955-966. |
[3] | Aulair AND, Carter TB (1993). Forest wildfires as a recent source of CO2 at northern latitudes. Canadian Journal of Forest Research, 23, 1528-1536. |
[4] | Cahoon DR Jr, Stocks BJ, Levine JS, Cofer WR III, Pierson JM (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysics Research, 97, 805-814. |
[5] | Choi SD, Chang YS, Park BK (2006). Increase in carbon emissions from forest fires after intensive reforestation and forest management programs. Science of the Total Environment, 372, 225-235. |
[6] | Cofer WR III, Winstead EL, Stocks BJ, Overbay LW, Goldammer JG, Cahoon DR, Levine JS (1996). Emissions from boreal forest fires: Are the atmospheric impacts underestimated? In: Levine JS ed. Biomass Burning and Global Change, Vol. 2. The MIT Press, Cambridge, UK. 834-839. |
[7] | Conard SG, Ivanova GA (1997). Wildfire in Russian boreal forests-potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environment Pollution, 98, 305-313. |
[8] |
Crutzen PJ, Andreae MO (1990). Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669-1678.
DOI URL PMID |
[9] | Crutzen PJ, Heidt LE, Krasnec JP, Pollock WH, Seiler W (1979). Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl, and COS. Nature, 282, 253-256. |
[10] | de Groot WJ, Landry R, Kurz WA, Anderson KR, Englefield P, Fraser RH, Hall RJ, Banfield E, Raymond DA, Decker V, Lynham TJ, Pritchard JM (2007). Estimating direct carbon emissions from Canadian wildland fires. International Journal of Wildland Fire, 16, 593-606. |
[11] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[12] | Fang JY (方精云) (2000). Forest biomass carbon pool of middle and high latitudes in North Hemisphere is probably much smaller than present estimates. Acta Phytoecologica Sinica (植物生态学报), 24, 635-638. (in Chinese with English abstract) |
[13] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
URL PMID |
[14] | Fang JY (方精云), Chen AP (陈安平), Zhao SQ (赵淑清), Ci LJ (慈龙骏) (2002). Estimating biomass carbon of China’s forests: supplementary notes on report published in Science (291: 2320-2322) by Fang et al. (2001). Acta Phytoecologica Sinica (植物生态学报), 26, 243-249. (in Chinese with English abstract) |
[15] | French NHF, Goovaerts P, Kasischke ES (2004). Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysics Research, 109, D14S08, doi: 10.1029/2003JD003635. |
[16] | French NHF, Kasischke ES, Stocks BJ (2000). Carbon released from fires in North American boreal forests. In: Kasischke ES, Stocks BJ eds. Springer-Verlag, New York. 377-388. |
[17] | French NHF, Kasischke ES, Williams DG (2001). Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. Journal of Geophysics Research, 107, 8151, doi: 10.1029/2001JD000480. |
[18] | Guo FT (郭福涛), Hu HQ (胡海清), Jin S (金森), Ma ZH (马志海), Zhang Y (张扬) (2010a). Relationship between forest lighting fire occurrence and weather factors in Daxing’an Mountains based on negative binomial model and zero-inflated negative binomial models. Chinese Journal of Plant Ecology (植物生态学报), 34, 571-577. (in Chinese with English abstract) |
[19] | Guo FT (郭福涛), Hu HQ (胡海清), Peng XJ (彭徐剑) (2010b). Estimation of gases released from shrubs, herbs and litters layer of different forest types in Daxing’an Mountains by forest fires from 1980 to 2005. Scientia Silvae Sinicae (林业科学), 46(1), 78-83. (in Chinese with English abstract) |
[20] | He HS (贺红士), Chang Y (常禹), Hu YM (胡远满), Liu ZH (刘志华) (2010). Contemporary studies and future perspectives of forest fuel and fuel management. Chinese Journal of Plant Ecology (植物生态学报), 34, 741-752. (in Chinese with English abstract) |
[21] | Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000). Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 403, 301-304. |
[22] | Hu HQ (胡海清), Sun L (孙龙), Guo QX (国庆喜), Lü XS (吕新双) (2007). Carbon emissions from forest fires on main arbor species in Daxing’an Mountains in Heilongjiang Province. Scientia Silvae Sinicae (林业科学), 43(11), 82-88. (in Chinese with English abstract) |
[23] | Hu HQ (胡海清), Wei SJ (魏书精), Jin S (金森), Sun L (孙龙) (2012). Measurement model of carbon emission from forest fire: a review. Chinese Journal of Applied Ecology (应用生态学报), 23, 1423-1434. (in Chinese with English abstract) |
[24] | IPCC (Intergovernmental Panel on Climate Change)(1991). Climate Change in 1991: the Science of Climate Change. Cambridge University Press, Cambridge, UK. |
[25] | IPCC (Intergovernmental Panel on Climate Change) (1997). Climate Change in 1997: the Science of Climate Change. Cambridge University Press, Cambridge, UK. |
[26] | IPCC (Intergovernmental Panel on Climate Change) (2001). Climate Change in 2001: the Science of Climate Change. Cambridge University Press, Cambridge, UK. |
[27] | Kasischke ES, Bruhwiler LP (2002). Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysics Research, 107, 8146, doi: 10.1029/2001JD000461. |
[28] | Kasischke ES, French NHF, Bourgeau-Chavez LL, Christensen NL Jr (1995). Estimating release of carbon from 1990 and 1991 forest fires in Alaska. Journal of Geophysics Research, 100, 2941-2951. |
[29] | Laursen KK, Hobbs PV, Radke LF, Rasmussen RA (1992). Some trace gas emissions from North American biomass fires with an assessment of regional and global fluxes from biomass burning. Journal of Geophysics Research, 97, 20687-20701. |
[30] | Levine JS, Cofer WR III, Cahoon DR Jr, Winstead EL (1995). Biomass burning: a driver for global change. Environmental Science and Technology, 29, 120-125. |
[31] | Lu B (陆炳), Kong SF (孔少飞), Han B (韩斌), Wang XY (王秀艳), Bai ZP (白志鹏) (2011). Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007. China Environmental Science (中国环境科学), 31, 186-194. (in Chinese with English abstract) |
[32] | Luo JY (骆介禹) (1988). Calculated on the case of forest fire intensity. Forest Fire Prevention (森林防火), (4), 13-15. (in Chinese) |
[33] | Lü AF (吕爱锋), Tian HQ (田汉勤) (2007). Interaction among climatic change, fire disturbance and ecosystem productivity. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 242-251. (in Chinese with English abstract) |
[34] | Lü AF (吕爱锋), Tian HQ (田汉勤), Liu YQ (刘永强) (2005). State-of-the-art in quantifying fire disturbance and ecosystem carbon cycle. Acta Ecologica Sinica (生态学报), 25, 2734-2743. (in Chinese with English abstract) |
[35] | Lü AF, Tian HQ, Liu ML, Liu JY, Melillo JM (2006). Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. Journal of Geophysics Research, 111, D05313, doi: 10.1029/2005JD006198. |
[36] | Mao XG (毛学刚), Fan WY (范文义), Li MZ (李明泽), Yu Y (于颖), Yang JM (杨金明) (2011). Temporal and spatial analysis of forest biomass in Changbai Mountains, Heilongjiang, China. Chinese Journal of Plant Ecology (植物生态学报), 35, 371-379. (in Chinese with English abstract) |
[37] | Moraes EC, Franchio SH, Rao VB (2004). Effects of biomass burning in Amazonia on climate: a numerical experiment with a statistical-dynamical model. Journal of Geophysical Research, 109, D05109, doi: 10.1029/2003JD003800. |
[38] | Robinson JM (1989). On uncertainty in the computation of global emissions from biomass burning. Climatic Change, 14, 243-262. |
[39] |
Running SW (2006). Is global warming causing more, larger wildfires? Science, 313, 927-928.
DOI URL PMID |
[40] | Seiler W, Crutzen PJ (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2, 207-247. |
[41] | Shan YL (单延龙), Zhang J (张姣) (2009). Estimation of carbon emission from forest fires in Jilin Province from 1969 to 2004. Scientia Silvae Sinicae (林业科学), 45(7), 84-89. (in Chinese with English abstract) |
[42] | Streets DG, Yarber KF, Woo JH, Carmichael GR (2003). Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17, 1099-1119. |
[43] | Sun L (孙龙), Zhang Y (张瑶), Guo QX (国庆喜), Hu HQ (胡海清) (2009). Carbon emission and dynamic of NPP post forest fires in 1987 in Daxing’an Mountains. Scientia Silvae Sinicae (林业科学), 45(12), 101-104. (in Chinese with English abstract) |
[44] | Tian XR (田晓瑞), Shu LF (舒立福), Wang MY (王明玉) (2003). Direct carbon emissions from Chinese forest fires, 1991-2000. Fire Safety Science (火灾科学), 12(1), 7-10. (in Chinese with English abstract) |
[45] | Tian XR (田晓瑞), Wang MY (王明玉), Yin L (殷丽), Shu LF (舒立福) (2009a). Fire behavior and consumption of fuel loadings in spring season in southern Daxing’an Mountains. Scientia Silvae Sinicae (林业科学), 45(3), 90-95. (in Chinese with English abstract) |
[46] | Tian XR (田晓瑞), Yin L (殷丽), Shu LF (舒立福), Wang MY (王明玉) (2009b). Carbon emission from forest fires in Daxing’an region in 2005-2007. Chinese Journal of Applied Ecology (应用生态学报), 20, 2877-2883. (in Chinese with English abstract) |
[47] | Wang XC (王晓春), Ji Y (及莹) (2009). Review of advances in dendropyrochronology. Chinese Journal of Plant Ecology (植物生态学报), 33, 587-597. (in Chinese with English abstract) |
[48] | Wang XK (王效科), Feng ZW (冯宗炜), Zhuang YH (庄亚辉) (2001). CO2, CO and CH4 emissions from forest fires in China. Scientia Silvae Sinicae (林业科学), 37(1), 90-95. (in Chinese with English abstract) |
[49] | Wang Y (王岳) (1996). Calculation of the fire intensity in foreign. Forest Fire Prevention (森林防火), (1), 43-44. (in Chinese) |
[50] |
Woodall CW, Liknes GC (2008). Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States. Carbon Balance and Management, 3, 5.
URL PMID |
[51] |
Woodwell GM, Whittacker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB (1978). The biota and the world carbon budget. Science, 199, 141-146.
DOI URL PMID |
[52] | Xu HC (徐化成) (1998). Daxing’an Mountains Forests in China. (中国大兴安岭森林). Science Press, Beijing. 1-20. (in Chinese) |
[53] | Xu XF (徐小锋), Tian HQ (田汉勤), Wan SQ (万师强) (2007). Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 175-188. (in Chinese with English abstract) |
[54] | Yang GF (杨国福), Jiang H (江洪), Yu SQ (余树全), Zhou GM (周国模), Jia WJ (贾伟江) (2009). Estimation of carbon emission from forest fires in Zhejiang Province of China in 1991-2006. Chinese Journal of Applied Ecology (应用生态学报), 20, 1038-1043. (in Chinese with English abstract) |
[55] | Zhou ZB (周振宝) (2006). Study on Biomass and Carbon Storage of Main Fuel Type in Daxing’an Mountains. (大兴安岭主要可燃物类型生物量与碳储量的研究) Master degree dissertation, Northeast Forestry University, Harbin, Harbin. 1-35. (in Chinese with English abstract) |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 方精云. 碳中和的生态学透视[J]. 植物生态学报, 2021, 45(11): 1173-1176. |
[3] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[4] | 李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎. 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征[J]. 植物生态学报, 2018, 42(12): 1154-1167. |
[5] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
[6] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[7] | 商志远, 王建, 崔明星, 陈振举. 樟子松树轮δ 13C的年内变化特征及其对气候要素的响应[J]. 植物生态学报, 2012, 36(12): 1256-1267. |
[8] | 王晓春, 宋来萍, 张远东. 大兴安岭北部樟子松树木生长与气候因子的关系[J]. 植物生态学报, 2011, 35(3): 294-302. |
[9] | 孙菊, 李秀珍, 王宪伟, 吕久俊, 李宗梅, 胡远满. 大兴安岭冻土湿地植物群落结构的环境梯度分析[J]. 植物生态学报, 2010, 34(10): 1165-1173. |
[10] | 刘志华, 常禹, 胡远满, 李月辉, 王金海, 荆国志, 张红新, 张长蒙. 呼中林区与呼中自然保护区森林粗木质残体储量的比较[J]. 植物生态学报, 2009, 33(6): 1075-1083. |
[11] | 邱扬, 李湛东, 张玉钧, 徐化成, 于汝元, 张希来. 大兴安岭北部地区原始林白桦种群的世代结构[J]. 植物生态学报, 2006, 30(5): 753-762. |
[12] | 张齐兵. 林区火灾后植物群落与冻土环境的多元分析[J]. 植物生态学报, 1993, 17(1): 43-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19