[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

基于稳定同位素示踪的不同覆砂厚度下枣树水分利用策略

  • 李蓓蓓 ,
  • 张明军 ,
  • 车存伟 ,
  • 刘泽琛 ,
  • 钟晓菲 ,
  • 张园园 ,
  • 张宇
展开
  • 西北师范大学地理与环境科学学院, 甘肃省绿洲资源环境与可持续发展重点实验室, 兰州 730070
*张明军(mjzhang2004@163.com)

收稿日期: 2023-10-19

  录用日期: 2024-04-08

  网络出版日期: 2024-04-12

基金资助

国家自然科学基金(41771035);甘肃省基础研究创新群体项目(22JR5RA129)

Water utilization strategy of Ziziphus jujuba under different sand cover thicknesses based on stable isotope tracing

  • LI Bei-Bei ,
  • ZHANG Ming-Jun ,
  • CHE Cun-Wei ,
  • LIU Ze-Chen ,
  • ZHONG Xiao-Fei ,
  • ZHANG Yuan-Yuan ,
  • ZHANG Yu
Expand
  • College of Geography and Environmental Sciences, Northwest Normal University, Key Laboratory of Resource Environment and Sustainable Development of Oasis in Gansu Province, Lanzhou 730070, China

Received date: 2023-10-19

  Accepted date: 2024-04-08

  Online published: 2024-04-12

Supported by

National Natural Science Foundation of China(41771035);Gansu Province Basic Research Innovation Group Program(22JR5RA129)

摘要

干旱区覆砂条件显著影响土壤水分状况, 进而影响植被对土壤水分的吸收和利用。然而, 对于枣树(Ziziphus jujuba)在不同覆砂条件下的吸水策略及其对输入水的动态响应仍知之甚少。该研究于2023年5月利用氢氧稳定同位素方法结合贝叶斯混合模型(MixSIAR)研究了枣树在不同覆砂厚度下的水分利用策略及其对输入水的响应。结果表明: 不覆砂样地在灌溉后第2天出现土壤含水量(SWC)峰值, 覆砂5 cm的样地在灌溉后第4天出现峰值, 覆砂10和15 cm的样地在灌溉后第6天出现峰值, 覆砂显著提高了SWC, 增强了土壤的保水性。不覆砂样地的氧稳定同位素比值(δ18O)和氢稳定同位素比值(δ2H)分别为-5.4‰- -2.2‰和-76.1‰- -61.0‰, 覆砂样地的δ18O和δ2H分别为-5.6‰- -3.0‰和-61.0‰- -75.7‰。灌溉后第2、4、6天, 0-10 cm土层不覆砂样地枣树水分利用比例(16.2%、9.1%、10.0%)相较覆砂5、10、15 cm样地(73.0%、54.5%、37.0%; 49.0%、46.2%、22.8%; 27.1%、36.1%、21.4%)稳定且覆砂措施增加了枣树对0-10 cm土壤水的利用, 即枣树对深层土壤水的利用存在滞后效应。以上结果说明了覆砂措施能够有效提高土壤的保水性, 影响植物水分利用策略, 有利于植物适应当地的干旱条件以及应对其他的环境变化。

本文引用格式

李蓓蓓 , 张明军 , 车存伟 , 刘泽琛 , 钟晓菲 , 张园园 , 张宇 . 基于稳定同位素示踪的不同覆砂厚度下枣树水分利用策略[J]. 植物生态学报, 2024 , 48(9) : 1202 -1212 . DOI: 10.17521/cjpe.2023.0295

Abstract

Aims Sand cover conditions in arid zones significantly affect soil water status, which in turn affects the utilization of soil water by vegetation. However, little is known about the water uptake strategies of Ziziphus jujuba under different sand cover conditions and its dynamic response to input water.

Methods In this study, the water utilization strategies of Z. jujuba under different sand cover thicknesses and their responses to input water were investigated using the hydroxide stable isotope method combined with a Bayesian mixed model (MixSIAR).

Important findings We found that the peak of soil water content (SWC) appeared on the 2nd day after irrigation in the non-sand-covered sample plots, on the 4th day after irrigation in the 5 cm sand-covered sample plots, and on the 6th day after irrigation in the 10 and 15 cm sand-covered sample plots. Sand cover significantly increased the SWC, and enhanced the water retention of the soil. The oxygen stable isotope composition (δ18O) and hydrogen stable isotope composition (δ2H) were -5.4‰- -2.2‰ and -76.1‰- -61.0‰ in the non-sand-covered sample plots, and -5.6‰- -3.0‰ and -61.0‰- -75.7‰ in the sand-covered sample plots, respectively. The 2nd, 4th, and 6th day after irrigation, the percentage of water utilization by Z. jujuba in the 0-10 cm soil layer without sand cover (16.2%, 9.1%, 10.0%) was stable compared with that in the 5, 10, 15 cm sand-covered sample plots (73.0%, 54.5%, 37.0%; 49.0%, 46.2%, 22.8%; 27.1%, 36.1%, 21.4%) and sand-covering measures increased the date palm’s water utilization of the 0-10 cm soil water. The sand mulching measures increased the utilization of 0-10 cm soil water by Z. jujuba, i.e. there was a lag in the utilization of deep soil water by Z. jujuba. The above results show that sand mulching can effectively improve the water retention of soil and influence the water utilization strategy of plants, which has implications for the adaptation of plants to local drought conditions and other environmental changes.

[an error occurred while processing this directive]

参考文献

[1] Bai YR, Zhao YP, Wang YQ, Zhang X (2017). Soil infiltration process and model analysis of field mulched with different thickness of gravel-sand in Ningxia. Journal of Soil and Water Conservation, 31(4), 81-85.
  [白一茹, 赵云鹏, 王幼奇, 张兴 (2017). 宁夏砂田不同砾石覆盖厚度土壤入渗过程及模型分析. 水土保持学报, 31(4), 81-85.]
[2] Barbeta A, Gimeno TE, Clavé L, Fréjaville B, Jones SP, Delvigne C, Wingate L, Ogée J (2020). An explanation for the isotopic offset between soil and stem water in a temperate tree species. New Phytologist, 227, 766-779.
[3] Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Pe?uelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225.
[4] Beyer M, Kühnhammer K, Dubbert M (2020). In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future. Hydrology and Earth System Sciences, 24, 4413-4440.
[5] Bowen GJ (2010). Isoscapes: spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences, 38, 161-187.
[6] Bu L, Liu J, Zhu L, Luo S, Chen X, Li S, Lee Hill R, Zhao Y (2013). The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management, 123, 71-78.
[7] Cai YK, Li Y, Feng H (2014). Effects of gravel-sand mulching degree and size on soil moisture evaporation. Journal of Soil and Water Conservation, 28(6), 273-277.
  [蔡永坤, 李毅, 冯浩 (2014). 不同砂石覆盖度和粒径对土壤水分蒸发的影响. 水土保持学报, 28(6), 273-277.]
[8] Ceacero CJ, Díaz-Hernández JL, del Campo AD, Navarro-Cerrillo RM (2020). Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil and Tillage Research, 197, 104495. DOI: 10.1016/j.still.2019.104495.
[9] Che CW, Zhang MJ, Wang SJ, Du QQ, Ma ZZ, Meng HF, Qu DY (2020). Studying spatio-temporal variation and nfluencing factors of soil evaporation in southern and northern mountains of Lanzhou city based on stable hydrogen and oxygen isotopes. Geographical Research, 39, 2537-2551.
  [车存伟, 张明军, 王圣杰, 杜勤勤, 马转转, 孟鸿飞, 瞿德业 (2020). 基于氢氧稳定同位素的兰州市南北两山土壤蒸发时空变化及影响因素研究. 地理研究, 39, 2537-2551.]
[10] Dai JJ, Zhang XP, Luo ZD, Wang R, Liu ZL, He XG, Rao ZG, Guan HD (2020). Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, 589, 125199. DOI: 10.1016/j.jhydrol.2020.125199.
[11] Diaz F, Jimenez CC, Tejedor M (2005). Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agricultural Water Management, 74, 47-55.
[12] Ding D, Zhao Y, Feng H, Hill RL, Chu X, Zhang T, He JQ (2018). Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China. Agricultural Water Management, 201, 246-257.
[13] Duan CX, Chen GJ, Hu YJ, Wu SF, Feng H, Dong QG (2021). Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions. Agricultural Water Management, 245, 106559. DOI: 10.1016/j.agwat.2020.106559.
[14] Fort F, Volaire F, Guilioni L, Barkaoui K, Navas ML, Roumet C (2017). Root traits are related to plant water-use among rangeland Mediterranean species. Functional Ecology, 31, 1700-1709.
[15] Gao L, Shao MG (2012). Temporal stability of shallow soil water content for three adjacent transects on a hillslope. Agricultural Water Management, 110, 41-54.
[16] Geris J, Tetzlaff D, McDonnell JJ, Soulsby C (2017). Spatial and emporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment, 595, 486-493.
[17] Good SP, Noone D, Bowen G (2015). Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349, 175-177.
[18] Gulhanat B, Chang SL, Bahjaynar T, Zhang YT (2022). Water sources of Picea schrenkiana and Berberis heteropoda in the Tianshan Mountains in summer. Chinese Journal of Applied Ecology, 33, 1893-1900.
  [古丽哈娜提·波拉提别克, 常顺利, 巴贺贾依娜尔·铁木尔别克, 张毓涛(2022). 天山林区雪岭云杉和异果小檗夏季水分来源. 应用生态学报, 33, 1893-1900.]
[19] Hamzei J (2011). Seed, oil, and protein yields of canola under combinations of irrigation and nitrogen application. Agronomy Journal, 103, 1152-1158.
[20] Hao S, Li FD (2021). Water sources of the typical desert vegetation in Ebinur Lake Basin. Acta Geographica Sinica, 76, 1649-1661.
  [郝帅, 李发东 (2021). 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76, 1649-1661.]
[21] Jia ZJ, Liu XZ, Xu TY, Li WC, Liu QL, Chen JH, Ma B (2023). Analysis of soil water evaporation characteristics and its influencing factors under mixed sand cover. Journal of Soil and Water Conservation, 37, 227-236.
  [贾振江, 刘学智, 徐天渊, 李王成, 刘巧玲, 陈继虹, 马波 (2023). 砂土混合覆盖下的土壤水分蒸发特性及其因子分析. 水土保持学报, 37, 227-236.]
[22] Jiménez CC, Tejedor M, Diaz F, Rodriguez CM (2005). Effectiveness of sand mulch in soil and water conservation in an arid region, Lanzarote, Canary Islands, Spain. Journal of Soil and Water Conservation, 60, 63-67.
[23] K?cher P, Horna V, Leuschner C (2013). Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiology, 33, 817-832.
[24] Li JJ, Fang XM, Ma HZ, Zhu JJ, Pan BT, Chen HL (1996). Late Cenozoic geomorphologic evolution of the upper Yellow River and uplift of the Tibetan Plateau. Science in China (Series D), 26, 316-322.
  [李吉均, 方小敏, 马海洲, 朱俊杰, 潘保田, 陈怀录 (1996). 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学(D辑: 地球科学), 26, 316-322.]
[25] Li R, Chai SX, Chai YW, Li YW, Lan XM, Ma JT, Cheng HB, Chang L (2021). Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China. Agricultural Water Management, 254, 106965. DOI: 10.1016/j.agwat.2021.106965.
[26] Li S, Li Y, Lin H, Feng H, Dyck M (2018). Effects of different mulching technologies on evapotranspiration and summer maize growth. Agricultural Water Management, 201, 309-318.
[27] Liao Y, Cao HX, Liu X, Li HT, Hu QY, Xue WK (2021). By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agricultural Water Management, 253, 106936. DOI: 10.1016/j.agwat.2021.106936.
[28] Liu BX, Shao MA (2014). Estimation of soil water storage using temporal stability in four land uses over 10 years on the Loess Plateau, China. Journal of Hydrology, 517, 974-984.
[29] Liu JZ, Wu HW, Cheng Y, Jin Z, Hu J (2021). Stable isotope analysis of soil and plant water in a pair of natural grassland and understory of planted forestland on the Chinese Loess Plateau. Agricultural Water Management, 249, 106800. DOI: 10.1016/j.agwat.2021.106800.
[30] Liu XE, Li XG, Hai L, Wang YP, Li FM (2014). How efficient is film fully-mulched ridge-furrow cropping to conserve rainfall in soil at a rainfed site. Field Crops Research, 169, 107-115.
[31] Lü WC, Qiu Y, Xie ZK, Wang XP, Wang YJ (2021). Effects of mulch gravels with different sizes on the process of water infiltration. Research of Soil and Water Conservation, 28(6), 46-51.
  [吕文聪, 邱阳, 谢忠奎, 王新平, 王亚军 (2021). 砾石覆盖粒径对土壤入渗过程的影响. 水土保持研究, 28(6), 46-51.]
[32] Miguez-Macho G, Fan Y (2021). Spatiotemporal origin of soil water taken up by vegetation. Nature, 598, 624-628.
[33] Mo F, Wang J, Zhou H, Luo C, Zhang X, Li X, Li F, Xiong L, Kavagi L, Nguluu SN, Xiong Y (2017). Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): an adaptive management in East African Plateau. Agricultural and Forest Meteorology, 236, 100-112.
[34] Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005). Deep root function in soil water dynamics in Cerrado savannas of central Brazil. Functional Ecology, 19, 574-581.
[35] Schreel JDM, von der Crone JS, Kangur O, Steppe K (2019). Influence of drought on foliar water uptake capacity of temperate tree species. Forests, 10, 562. DOI: 10.3390/f10070562.
[36] Sharma R, Bhardwaj S (2017). Effect of mulching on soil and water conservation—A review. Agricultural Reviews, 38, 311-315.
[37] Song RQ, Chu GX, Ye J, Bai L, Zhang RX, Yang JS (2010). Indoor experiment on the effect of sand mixing on soil water infiltration and evaporation. Journal of Agricultural Engineering, 26(S1), 109-114.
  [宋日权, 褚贵新, 冶军, 白玲, 张瑞喜, 杨劲松 (2010). 掺砂对土壤水分入渗和蒸发影响的室内试验. 农业工程学报, 26(S1), 109-114.]
[38] Stock B, Semmens B (2016). MixSIAR GUI User Manual v3.1. Scripps Institution of Oceanography. UC San Diego, San Diego, USA.
[39] Su PY, Zhang MJ, Wang SJ, Qiu X, Wang JX, Du QQ, Guo R, Che CW (2020). Water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China. Chinese Journal of Applied Ecology, 31, 1835-1843.
  [苏鹏燕, 张明军, 王圣杰, 邱雪, 王家鑫, 杜勤勤, 郭蓉, 车存伟 (2020). 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31, 1835-1843.]
[40] Tang Y (2023). Unravelling δ13C signal in Scots pine trees for climate change and tree physiology studies. Dissertationes Forestales, 2023, 335. DOI: 10.14214/df.335.
[41] Tetzlaff D, Buttle J, Carey SK, Kohn MJ, Laudon H, McNamara JP, Smith A, Sprenger M, Soulsby C (2021). Stable isotopes of water reveal differences in plant-soil water relationships across northern environments. Hydrological Processes, 35, 1-19.
[42] Wang J, Fu BJ, Lu N, Zhang L (2017). Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609, 27-37.
[43] Wang J, Lu N, Fu BJ (2019). Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666, 685-693.
[44] Wang J, Zhang M, Argiriou AA, Wang S, Qu D, Zhang Y, Su P (2021). Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 1-18.
[45] Wang P, Chen G, Pei XJ, Tang XL, Song C (2023). Water use strategies of typical plants in a tunnel construction area at eastern margin of Qinghai-Xizang Plateau. Bulletin of Soil and Water Conservation, 43(4), 137-145.
  [王鹏, 陈果, 裴向军, 唐晓鹿, 宋词 (2023). 青藏高原东缘某隧道建设区典型植物水分利用策略. 水土保持通报, 43(4), 137-145.]
[46] Wang Y, Xie Z, Malhi SS, Vera CL, Zhang Y (2014). Gravel-sand mulch thickness effects on soil temperature, evaporation, water use efficiency and yield of watermelon in semi-arid Loess Plateau, China. Acta Ecologica Sinica, 34, 261-265.
[47] Xu CJ, Jia SH, Zhao X, Bai YS, Cao R (2022). Application of water saving irrigation and fertilization technology in jujube planting. Water Resources Planning and Design, (2), 82-84.
  [许春娟, 贾生海, 赵霞, 白有帅, 曹睿 (2022). 节水灌溉和施肥技术在枣树中的应用. 水利规划与设计, (2), 82-84.]
[48] Yang Y, Zhang MJ, Wang SJ, Qu DY, Zhang Y, Wang JX (2023). Soil moisture variability affected by sand mulch: an isotope-based assessment of irrigated farmland in Northwest China. Ecohydrology, 16, 1-12.
[49] Yeh HF, Lin HI, Lee CH, Hsu KC, Wu CS (2014). Identifying seasonal groundwater recharge using environmental stable isotopes. Water, 6, 2849-2861.
[50] Zhang P, Wei T, Han QF, Ren XL, Jia ZK (2020). Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agricultural Water Management, 241, 106382. DOI: 10.1016/j.agwat.2020.106382
[51] Zhao L, Zhang L, Zhao N, Ge JZ, Jin JW (2022). Water use strategy of fruit-grass complex systems in different habitats based on isotope tracer. Journal of Soil and Water Conservation, 36(1), 86-94.
  [赵玲, 张露, 赵妮, 戈建珍, 金晶炜 (2022). 基于同位素示踪的不同生境果草复合系统水分利用策略. 水土保持学报, 36(1), 86-94.]
[52] Zhao WJ, Cui Z, Zhou CQ (2020). Spatiotemporal variability of soil-water content at different depths in fields mulched with gravel for different planting years. Journal of Hydrology, 590, 125253. DOI: 10.1016/j.jhydrol.2020.125253.
[53] Zhou PP, Zhang MJ, Wang SJ, Wang J, Zhao PP, Liu XM (2016). The characteristics of stable hydrogen and oxygen isotopes of greening plants in Lanzhou downtown. Chinese Journal of Ecology, 35, 2942-2951.
  [周盼盼, 张明军, 王圣杰, 王杰, 赵培培, 刘雪梅 (2016). 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35, 2942-2951.]
[54] Zumrat Y, Dong ZW, Liu SYH, Ye M, Ma XD, Su ZH (2022). Analysis of water sources in Tamarix ramosissima and Haloxylon persicum communities in the desert-oasis transition zone. Journal of Soil and Water Conservation, 36(6), 213-221.
  [祖姆热提·于苏甫江, 董正武, 刘隋赟昊, 叶茂, 马晓东, 苏志豪(2022). 荒漠-绿洲过渡带多枝柽柳和白梭梭水分溯源研究. 水土保持学报, 36(6), 213-221.]
文章导航

/

[an error occurred while processing this directive]