[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

基于多源数据的新疆沙漠植物白梭梭遗传格局与扩散路径模拟

  • 马佳正 ,
  • 陈雨婷 ,
  • 马松梅 ,
  • 张丹 ,
  • 贺凌云
展开
  • 1石河子大学理学院, 干旱区景观生态重点实验室, 绿洲城镇与山盆系统生态兵团重点实验室, 新疆石河子 832000
    2石河子大学生命科学学院, 绿洲城镇与山盆系统生态兵团重点实验室, 新疆石河子 832000
*马松梅(shzmsm@126.com), ORCID: 0000-0002-3107-2256

收稿日期: 2023-12-04

  录用日期: 2024-05-22

  网络出版日期: 2024-05-23

基金资助

国家自然科学基金(41561007)

Genetic pattern and diffusion path simulation of Haloxylon persicum in Xinjiang based on multi-source data

  • MA Jia-Zheng ,
  • CHEN Yu-Ting ,
  • MA Song-Mei ,
  • ZHANG Dan ,
  • HE Ling-Yun
Expand
  • 1Key Laboratory of Arid Land Landscape Ecology, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Science, Shihezi University, Shihezi, Xinjiang 832000, China
    2Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, China

Received date: 2023-12-04

  Accepted date: 2024-05-22

  Online published: 2024-05-23

Supported by

National Natural Science Foundation of China(41561007)

摘要

典型沙生植物白梭梭(Haloxylon persicum)在中国主要分布在新疆古尔班通古特沙漠, 随着第四纪沙漠形成、扩展发生过大范围的迁移扩张事件, 开展物种的遗传格局与迁移路径研究, 有助于深入理解其分布与进化。该研究利用白梭梭的自然分布数据与不同地理种群的trnS-trnG、trnV和ITS序列组合数据, 整合GIS空间分析、物种分布模型、GIS扩散路径分析、单倍型网络分析、分子方差分析等探究古尔班通古特沙漠12个自然分布种群的空间遗传变异格局, 利用最大熵模型(MaxEnt)模拟末次盛冰期和当前气候下的物种适宜分布格局, 分析冰后期的种群动态及其迁移扩散路径。主要结果有: (1) trnS-trnG和trnV组合序列比对长度为1 340 bp, 共定义9个叶绿体DNA (cpDNA)单倍型; ITS1-ITS4序列长576 bp, 共定义6个核糖体DNA (nrDNA)单倍型; (2)种群总的遗传多样性(HT)为0.862 (cpDNA)和0.777 (nrDNA), 显著高于种群内平均遗传多样性(HS) (0.155 (cpDNA)和0.217 (nrDNA)), 超过76%的遗传变异发生于采样的不同种群间; (3)分子错配分布曲线显示白梭梭存在近期种群扩张, 扩散路径分析结果显示末次盛冰期白梭梭主要沿古尔班通古特沙漠南缘发生由东向西的扩散; 在当前气候下, 仍然呈沿沙漠南缘向西扩散的路径, 但迁移的幅度明显降低。古尔班通古特沙漠白梭梭种群具有较高的遗传多样性, 种群间遗传分化显著, 末次盛冰期以来白梭梭显示出沿沙漠边缘迁移的扩散模式, 其中古尔班通古特沙漠南缘是白梭梭最重要的扩散路径, 是连接其东西种群的重要通道。

本文引用格式

马佳正 , 陈雨婷 , 马松梅 , 张丹 , 贺凌云 . 基于多源数据的新疆沙漠植物白梭梭遗传格局与扩散路径模拟[J]. 植物生态学报, 2024 , 48(10) : 1326 -1335 . DOI: 10.17521/cjpe.2023.0360

Abstract

Aims In China, the typical desert plant Haloxylon persicum is only distributed in Gurbantünggüt Desert, Xinjiang, China. With the formation and expansion of the Quaternary desert, extensive migration and expansion events occurred. The study of the genetic pattern and migration path of the species is helpful to further understand the distribution and evolution of H. persicum.

Methods In this study, the natural distribution data of H. persicum were combined with the trnS-trnG, trnV and ITS sequences of different geographic populations, GIS spatial analysis, species distribution modeling, GIS diffusion path analysis, haplotype network analysis (Network) and molecular analysis of variance (AMOVA) were integrated to investigate the spatial genetic variation pattern of 12 naturally distributed populations of H. persicum in Gurbantünggüt Desert, including 106 individuals. The Maximum Entropy Model (MaxEnt) was used to simulate the suitable distribution pattern of H. persicum in the Last Glacial Maximum and current climate. The analysis of population dynamics and dispersal paths during the late glacial period will help to understand the genetic variation pattern of H. persicum among different geographic populations in the Gurbantünggüt Desert.

Important findings The sequence length of trnS-trnG and trnV was 1 340 bp, and a total of 9 chloroplast DNA (cpDNA) haplotypes were defined. The sequence length of ITS1-ITS4 was 576 bp, and a total of 6 nuclear ribosomal DNA (nrDNA) haplotypes were defined. (2) The total genetic diversity (HT) of the population was 0.862 (cpDNA) and 0.777 (nrDNA), which was significantly higher than the average genetic diversity (HS) of the population (0.155 (cpDNA) and 0.217 (nrDNA)), and more than 76% of the genetic variation occurred in different sampled populations. (3) The mismatch distribution curve showed that H. persicum experienced recent population expansion, and the dispersal path analysis showed that H. persicumhad spread from west to east along the southern margin of Gurbantünggüt Desert since the Last Glacial Maximum, under the current climate period, H. persicum continues to spread westward along the southern margin of the desert, but the migration amplitude has obviously reduced. Haloxylon persicum population in Gurbantünggüt Desert has high genetic diversity and significant genetic differentiation among populations. Since the Last Glacial Maximum, H. persicum has exhibited a diffusion mode of migration along the edge of the desert. The southern edge of the Gurbantünggüt Desert is the most important diffusion path of Haloxylon persicum and an important channel connecting its east and west populations.

[an error occurred while processing this directive]

参考文献

[1] Abbott RJ, Comes HP (2004). Evolution in the Arctic: a phylogeographic analysis of the circumarctic plant (purple saxifrage). New Phytologist, 161, 211-224.
[2] An ZY, Tang H, Li WR (2018). Genetic diversity analysis of Paeonia rockii cultivar based on EST-SSR. Molecular Plant Breeding, 16, 6744-6752.
  [ 安宗燕, 唐红, 李婉茹 (2018). 基于EST-SSR的紫斑牡丹品种遗传多样性分析. 分子植物育种, 16, 6744-6752.]
[3] Chen YT, Ma SM, Zhang D, Wei B, Huang G, Zhang YL, Ge BW (2022). Diversification and historical demography of Haloxylon ammodendron in relation to Pleistocene climatic oscillations in northwestern China. PeerJ, 10, e14476. DOI: 10.7717/peerj.14476.
[4] Chen YT, Ma SM, Zhang D, Zhang L, Wang CC (2024). Diversity pattern and formation mechanism of sympatric Haloxylon ammodendron and Haloxylon persicum in Xinjiang, China. Chinese Journal of Plant Ecology, 48, 56-67.
  [ 陈雨婷, 马松梅, 张丹, 张林, 王春成 (2024). 新疆同域分布梭梭和白梭梭多样性格局及其形成机制. 植物生态学报, 48, 56-67.]
[5] Dong GR, Chen HZ, Wang GY, Li XZ, Shao YJ, Jin J (1995). Evolution and climate change of desert and sandy land in Northern China since 150 ka. Science in China (Series B), 25, 1303-1312.
  [ 董光荣, 陈惠忠, 王贵勇, 李孝泽, 邵亚军, 金炯 (1995). 150 ka以来中国北方沙漠、沙地演化和气候变化. 中国科学(B辑), 25, 1303-1312.]
[6] Excoffier L, Laval G, Schneider S (2007). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
[7] Feng XL, Liu R, Ma J, Xu Z, Wang YG, Kong L (2021). Photosynthetic characteristics and influencing factors of Haloxylon persicum stems (different diameter classes) in Gurbantonggut Desert. Acta Ecologica Sinica, 41, 9784-9795.
  [ 冯晓龙, 刘冉, 马健, 徐柱, 王玉刚, 孔璐 (2021). 古尔班通古特沙漠白梭梭枝干光合及其影响因素. 生态学报, 41, 9784-9795.]
[8] Group TAP (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141, 399-436.
[9] Group TAP (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.
[10] Harpending HC (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66, 591-600.
[11] Hewitt GM (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of Series B: Biological Sciences, 359, 183-195.
[12] Jiang XL, Xu GB, Deng M (2019). Spatial genetic patterns and distribution dynamics of the rare oak Quercus chungii: implications for biodiversity conservation in southeast China. Forests, 10, 821. DOI: 10.3390/f10090821.
[13] Jin K, Lu Y, Zhou HM, Zhang QZ, Hu Y, Wan D, Yan JM (2022). Research progress on the hydrology in the Gurbantunggut Desert. Journal of China Hydrology, 42(1), 1-10.
  [ 金可, 卢阳, 周火明, 张乾柱, 胡月, 万丹, 闫建梅 (2022). 古尔班通古特沙漠水文研究进展. 水文, 42(1), 1-10.]
[14] Lang XP, Fan RY, Li QF (2023). Analysis of potential suitable areas of Allium mongolicum in northern China. Acta Agrestia Sinica, 31, 3525-3534.
  [ 郎显鹏, 樊如月, 李青丰 (2023). 中国北方地区蒙古韭潜在适生区分析. 草地学报, 31, 3525-3534.]
[15] Li X, Gao GL, Sun GL, Shi HB, Zhao FF, Ma L (2021). Potential suitable areas of Haloxylon ammodendron and Haloxylon persicum in Xinjiang based on MaxEnt. Journal of West China Forestry Science, 50(1), 145-152.
  [ 李雪, 高广磊, 孙桂丽, 史浩伯, 赵芳芳, 马龙 (2021). 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学, 50(1), 145-152.]
[16] Ma SM, Nie YB, Jiang XL, Xu Z, Ji WQ (2019). Genetic structure of the endangered, relict shrub Amygdalus mongolica (Rosaceae) in arid Northwest China. Australian Journal of Botany, 67, 128-139.
[17] Mao ZM, Zhang DM (1994). The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 11(3), 1-26.
  [ 毛祖美, 张佃民 (1994). 新疆北部早春短命植物区系纲要. 干旱区研究, 11(3), 1-26.]
[18] “Natural Environmental Evolution” Research Group (2003). Evolution and development trend of natural environment in northwest China. China Water Resources, 9, 33-36.
  [ “自然环境演变”课题组 (2003). 西北地区自然环境演变及其发展趋势. 中国水利, 9, 33-36.]
[19] Reed DH, Frankham R (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237.
[20] Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM (2001). Rapid diversification of a species-rich genus of neotropical rain forest trees. Science, 293, 2242-2245.
[21] Shaw J, Lickey EB, Schilling EE, Small RL (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany, 94, 275-288.
[22] Sun FF, Nie YB, Ma SM, Wei B, Ji WQ (2019). Species differentiation of Haloxylon ammodendron and Haloxylon persicum based on ITS and cpDNA sequences. Scientia Silvae Sinicae, 55(3), 43-53.
  [ 孙芳芳, 聂迎彬, 马松梅, 魏博, 吉万全 (2019). 基于ITS和cpDNA序列的梭梭和白梭梭物种分化. 林业科学, 55(3), 43-53.]
[23] The Editorial Committee of Vegetation of China (1980). Vegetation of China. Science Press, Beijing. 956-979.
  [ 中国植被编辑委员会 (1980). 中国植被. 科学出版社, 北京. 956-979.]
[24] Wang CC, Ma SM, Zhang D, Wang SM (2020). Spatial genetic structure of Lycium ruthenicum in the Qaidam Basin. Chinese Journal of Plant Ecology, 44, 661-668.
  [ 王春成, 马松梅, 张丹, 王绍明 (2020). 柴达木野生黑果枸杞的空间遗传结构. 植物生态学报, 44, 661-668.]
[25] Wang CL, Guo QS, Tan DY, Shi ZM, Ma C (2005). Haloxylon ammodendron community patterns in different habitats along southeastern edge of Zhunger Basin. Chinese Journal of Applied Ecology, 16, 1224-1229.
  [ 王春玲, 郭泉水, 谭德远, 史作民, 马超 (2005). 准噶尔盆地东南缘不同生境条件下梭梭群落结构特征研究. 应用生态学报, 16, 1224-1229.]
[26] Wang Q, Zhang ML, Yin LK (2016). Phylogeographic structure of a Tethyan relict Capparis spinosa (Capparaceae) traces Pleistocene geologic and climatic changes in the western Himalayas, Tianshan Mountains, and adjacent desert regions. BioMed Research International, 2016, 5792708. DOI: 10.1155/2016/5792708.
[27] Wang YT, Zhang DH, Zhang ZS (2022). Spatial distribution and interspecific correlation of Haloxylon persicum and H. ammodendron on fixed dunes of the Gurbantunggut Desert, China. Biodiversity Science, 30, 24-35.
  [ 王雅婷, 张定海, 张志山 (2022). 古尔班通古特沙漠固定沙丘上白梭梭和梭梭的空间分布及种间关联性. 生物多样性, 30, 24-35.]
[28] Wei B, Ma SM, Song J, He LY, Li XC (2019). Prediction of the potential distribution and ecological suitability of Fritillaria walujewii. Acta Ecologica Sinica, 39, 228-234.
  [ 魏博, 马松梅, 宋佳, 贺凌云, 李晓辰 (2019). 新疆贝母潜在分布区域及生态适宜性预测. 生态学报, 39, 228-234.]
[29] Wei Y, Yin LK, Yan C (2005). Study on the flowering and pollination characteristics of Haloxylon persicum. Arid Zone Research, 22, 85-89.
  [ 魏岩, 尹林克, 严成 (2005). 白梭梭开花及风媒传粉特点. 干旱区研究, 22, 85-89.]
[30] White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols, 18, 315-322.
[31] Xie XH, Li ZZ, Jin JH, Liu R, Zou XJ, Ma YQ (2022). Preliminary study on sedimentary structure and development model of vegetated linear dune in the southeastern Gurbantunggut Desert. Journal of Desert Research, 42(3), 74-84.
  [ 解锡豪, 李志忠, 靳建辉, 刘瑞, 邹晓君, 马运强 (2022). 古尔班通古特沙漠东南部植被线形沙丘内部构造及发育模式. 中国沙漠, 42(3), 74-84.]
[32] Yang SF (2021). Combining the Responses of Habitat Suitability and Connectivity to Climate Change for Sika Deer (Cervus nippon) in Shennongjia Area, China. Mater degree dissertation, Central China Normal University, Shanghai.
  [ 杨绍法 (2021). 气候变化对神农架梅花鹿生境及其连通性的影响. 硕士学位论文, 华中师范大学, 上海.]
[33] Yu HB, Zhang YL, Li SC, Qi W, Hu ZJ (2014). Predicting the dispersal routes of alpine plant Pedicularis longiflora (Orobanchaceae) based on GIS and species distribution models. Chinese Journal of Applied Ecology, 25, 1669-1673.
  [ 于海彬, 张镱锂, 李士成, 祁威, 胡忠俊 (2014). 基于GIS和物种分布模型的高山植物长花马先蒿迁移路线模拟. 应用生态学报, 25, 1669-1673.]
[34] Zhang LY (2002). Haloxylon ammodendron and Haloxylon persicum in Xinjiang desert (Part 1). Journal of Botany, 4, 4-6.
  [ 张立运 (2002). 新疆荒漠中的梭梭和白梭(上). 植物杂志, 4, 4-6.]
[35] Zhang P (2006). Studies on Genetic Diversity of Haloxylon in Xinjiang with ISSR. Mater degree dissertation, Xinjiang Agricultural University, ürümqi.
  [ 张萍 (2006). 利用ISSR分子标记对新疆梭梭属植物遗传多样性的研究. 硕士学位论文, 新疆农业大学, 乌鲁木齐.]
[36] Zhang P, Dong YZ, Wei Y, Hu CZ (2006). Analysis of genetic diversity of Haloxylon persicum (Chenopodiaceae) in Xinjiang by ISSR. Acta Botanica Yunnanica, 28, 359-362.
  [ 张萍, 董玉芝, 魏岩, 胡成志 (2006). 利用ISSR标记对新疆白梭梭居群的遗传多样性分析. 云南植物研究, 28, 359-362.]
[37] Zhang Z (2021). Population Restoration and Habitat Protection of Red Deer (Cervus canadensis) in Chifeng. Mater degree dissertation, Beijing Forestry University, Beijing.
  [ 张沼(2021). 赤峰市马鹿(Cervus canadensis)种群恢复和栖息地保护研究. 硕士学位论文, 北京林业大学, 北京.]
[38] Zhu BQ, Yu JJ, Qin XG, Liu ZT, Xiong HG (2013). Formation and evolution of sandy deserts in Xinjiang: the palaeo- environmental evidences. Acta Geographica Sinica, 68, 661-679.
  [ 朱秉启, 于静洁, 秦晓光, 刘子亭, 熊黑钢 (2013). 新疆地区沙漠形成与演化的古环境证据. 地理学报, 68, 661-679.]
文章导航

/

[an error occurred while processing this directive]