[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
综述

土壤微生物固碳机理及其影响因素研究进展

  • 郭强 ,
  • 韩子琛 ,
  • 夏允 ,
  • 杨柳明 ,
  • 范跃新 ,
  • 杨玉盛
展开
  • 1福建师范大学地理科学学院、碳中和未来技术学院, 福州 350007
    2福建师范大学湿润亚热带生态-地理过程教育部重点实验室, 福建省植物生理生态重点实验室, 福州 350007
    3福建师范大学地理研究所, 福州 350007
*范跃新(yxfan@fjnu.edu.cn); ORCID: 0000-0001-8881-1956

收稿日期: 2023-12-14

  录用日期: 2024-07-05

  网络出版日期: 2024-07-16

基金资助

国家自然科学基金(32192433);国家自然科学基金(32371674);国家自然科学基金(32171587)

Study advances on the mechanism of soil microbial carbon fixation and associated influencing factors

  • GUO Qiang ,
  • HAN Zi-Chen ,
  • XIA Yun ,
  • YANG Liu-Ming ,
  • FAN Yue-Xin ,
  • YANG Yu-Sheng
Expand
  • 1School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350007, China
    2Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350007, China
    3Institute of Geography, Fujian Normal University, Fuzhou 350007, China

Received date: 2023-12-14

  Accepted date: 2024-07-05

  Online published: 2024-07-16

Supported by

National Natural Science Foundation of China(32192433);National Natural Science Foundation of China(32371674);National Natural Science Foundation of China(32171587)

摘要

土壤微生物是陆地生态系统碳循环的主要驱动者, 不仅通过促进有机碳分解向大气释放CO2, 还会通过微生物固碳作用固定大气CO2。微生物固碳途径普遍存在于多种生态系统, 对全球碳循环具有重要意义。该文通过收集和梳理相关文献, 从3个方面综述了土壤微生物固碳的机理和影响因素: 1)土壤自养微生物固碳途径; 2)土壤异养微生物固碳机理; 3)土壤属性、生态系统类型和气候变化(增温、降水变化)等对土壤微生物固碳速率和潜力的影响。该文有助于提升对土壤微生物固碳机理的理解和认识, 从微生物固碳角度为陆地生态系统碳库动态以及土壤碳汇的不确定性提供解释, 也为完善未来气候变化下陆地碳循环模型提供理论依据。

本文引用格式

郭强 , 韩子琛 , 夏允 , 杨柳明 , 范跃新 , 杨玉盛 . 土壤微生物固碳机理及其影响因素研究进展[J]. 植物生态学报, 2024 , 48(11) : 1406 -1421 . DOI: 10.17521/cjpe.2023.0379

Abstract

Soil microorganisms are key drivers of carbon (C) cycling in terrestrial ecosystems not only by facilitating soil organic C decomposition and CO2 emission, but sequestering atmospheric CO2 into soil organic C through microbial C fixation. Due to the ubiquitous presence of microorganisms in soils, microbial C fixation is vital for terrestrial ecosystem C cycle globally. In this paper, we explored the mechanisms and determinants of soil microbial C fixation based on data collections and analyses to address the following the three issues: 1) the pathways and processes of autotrophic microbial C fixation in soil; 2) the pathways and processes of heterotrophic microbial C fixation in soil; and 3) the impacts of soil properties, ecosystem types, and climate change (i.e., warming and precipitation change) on microbial C fixation. Overall, the paper provides insights into the dynamics of C fixation in terrestrial ecosystems which is helpful for better understanding the uncertainty of soil C pool in the relationship to microbial C fixation, and which also lays a theoretical foundation for advancing of C cycling models under climate change.

[an error occurred while processing this directive]

参考文献

[1] Akinyede R, Taubert M, Schrumpf M, Trumbore S, Küesel K (2022). Dark CO2 fixation in temperate beech and pine forest soils. Soil Biology & Biochemistry, 165, 108526. DOI: 10.1016/j.soilbio.2021.108526.
[2] Akinyede R, Taubert M, Schrumpf M, Trumbore S, Küsel K (2020). Rates of dark CO2 fixation are driven by microbial biomass in a temperate forest soil. Soil Biology & Biochemistry, 150, 107950. DOI: 10.1016/j.soilbio.2020.107950.
[3] Alfreider A, Grimus V, Luger M, Ekblad A, Salcher MM, Summerer M (2018). Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiology Ecology, 94, fiy163. DOI: 10.1093/femsec/fiy163.
[4] Alta? N, Aslan AS, Karata? E, Chronopoulou E, Labrou NE, Binay B (2017). Heterologous production of extreme alkaline thermostable NAD+-dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila. Process Biochemistry, 61, 110-118.
[5] Amundson RG, Davidson EA (1990). Carbon dioxide and nitrogenous gases in the soil atmosphere. Journal of Geochemical Exploration, 38, 13-41.
[6] Badger MR, Bek EJ (2008). Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2acquisition by the CBB cycle. Journal of Experimental Botany, 59, 1525-1541.
[7] Bar-Even A, Noor E, Lewis N E, Milo R (2010). Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy of Sciences of the United States of America, 107, 8889-8894.
[8] Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M (1954). The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. Journal of the American Chemical Society, 76, 1760-1770.
[9] Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C (2021). Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. The ISME Journal, 15, 3339-3356.
[10] Berg IA (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environmental Microbiology, 77, 1925-1936.
[11] Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007). A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science, 318, 1782-1786.
[12] Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010a). Autotrophic carbon fixation in Archaea. Nature Reviews Microbiology, 8, 447-460.
[13] Berg IA, Ramos-Vera WH, Petri A, Huber H, Fuchs G (2010b). Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology, 156, 256-269.
[14] Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006). Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry, 77, 91-116.
[15] Beulig F, Urich T, Nowak M, Trumbore SE, Gleixner G, Gilfillan GD, Fjelland KE, Küsel K (2016). Altered carbon turnover processes and microbiomes in soils under long- term extremely high CO2 exposure. Nature Microbiology, 1, 15025. DOI: 10.1038/nmicrobiol.2015.25.
[16] Bian H, Sun XX, Yuan QP (2019). Advances in metabolic engineering of heterotrophic microorganisms for CO2 fixation: a review. Chinese Journal of Biotechnology, 35, 195-203.
  [卞化, 孙新晓, 袁其朋 (2019). 代谢工程改造异养微生物固定CO2研究进展. 生物工程学报, 35, 195-203.]
[17] Bouskill NJ, Wood TE, Baran R, Hao Z, Ye Z, Bowen BP, Lim HC, Nico PS, Holman HY, Gilbert B, Silver WL, Northen TR, Brodie EL (2016). Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition. Frontiers in Microbiology, 7, 323. DOI: 10.3389/fmicb.2016.00323.
[18] Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F, Reinthaler T, Herndl GJ, Griebler C (2021). Reviews and syntheses: heterotrophic fixation of inorganic carbon— Significant but invisible flux in environmental carbon cycling. Biogeosciences, 18, 3689-3700.
[19] Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, Müller C, Braker G (2017). Soil conditions rather than long-term exposure to elevated CO2 affect soil microbial communities associated with N-cycling. Frontiers in Microbiology, 8, 1976. DOI: 10.3389/fmicb.2017.01976.
[20] Calvin M, Benson AA (1948). The path of carbon in photosynthesis. Science, 107, 476-480.
[21] Chen LY, Fang K, Wei B, Qin SQ, Feng XH, Hu TY, Ji CJ, Yang YH (2021). Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24, 1018-1028.
[22] Chen XJ, Wu XH, Jian Y, Yuan HZ, Zhou P, Ge TD, Tong CL, Zou DS, Wu JS (2014). Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils. Environmental Science, 35, 1144-1150.
  [陈晓娟, 吴小红, 简燕, 袁红朝, 周萍, 葛体达, 童成立, 邹冬生, 吴金水 (2014). 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析. 环境科学, 35, 1144-1150.]
[23] Ding XL, Chen SY, Zhang B, Liang C, He HB, Horwath WR (2019). Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biology & Biochemistry, 135, 13-19.
[24] Ducat DC, Silver PA (2012). Improving carbon fixation pathways. Current Opinion in Chemical Biology, 16, 337-344.
[25] Dugar D, Stephanopoulos G (2011). Relative potential of biosynthetic pathways for biofuels and bio-based products. Nature Biotechnology, 29, 1074-1078.
[26] Dunbar J, Eichorst SA, Gallegos-Graves LV, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR, Kuske CR (2012). Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology, 14, 1145-1158.
[27] Erb TJ (2011). Carboxylases in natural and synthetic microbial pathways. Applied and Environmental Microbiology, 77, 8466-8477.
[28] Esparza M, Cárdenas JP, Bowien B, Jedlicki E, Holmes DS (2010). Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. BMC Microbiology, 10, 229. DOI: 10.1186/1471-2180-10-229.
[29] Evans MC, Buchanan BB, Arnon DI (1966). A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 55, 928-934.
[30] Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, H?gberg P, Linder S, MacKenzie FT, Moore B 3rd, Pedersen T, Rosenthal Y, Seitzinger S, et al.(2000). The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291-296.
[31] Fan ZL (2008). Fifth carbon sequestration path. Chinese Journal of Nature, 30(2), 93.
  [范宗理 (2008). 第五条固碳路径. 自然杂志, 30(2), 93.]
[32] Feng HY, Ma MT, Wang Z, Ma YR, Wang SK (2023). Diversity and community composition of carbon-fixing microbes along precipitation gradient in the Tibetan Plateau. Catena, 222, 106849. DOI: 10.1016/j.catena.2022.106849.
[33] Feng ZJ, Zhu LZ (2017). Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil. Science of the Total Environment, 584-585, 776-782.
[34] Finster K (2008). Microbiological disproportionation of inorganic sulfur compounds. Journal of Sulfur Chemistry, 29, 281-292.
[35] Fuchs G (1989). Alternative pathways of autotrophic CO2 fixation//Schlegel HG, Bowen B. Autotrophic Bacteria. Springer Verlag, Madison, USA. 365-382.
[36] Ge TD, Yuan HZ, Zhu HH, Wu XH, Nie SA, Liu C, Tong CL, Wu JS, Brookes P (2012). Biological carbon assimilation and dynamics in a flooded rice-soil system. Soil Biology & Biochemistry, 48, 39-46.
[37] Goetzl S, Jeoung JH, Hennig SE, Dobbek H (2011). Structural basis for electron and methyl-group transfer in a methyltransferase system operating in the reductive acetyl-CoA pathway. Journal of Molecular Biology, 411, 96-109.
[38] Gong FY, Liu GX, Zhai XY, Zhou J, Cai Z, Li Y (2015). Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnology for Biofuels, 8, 86. DOI: 10.1186/s13068-015-0268-1.
[39] Gong FY, Zhu HW, Zhang YP, Li Y (2018). Biological carbon fixation: from natural to synthetic. Journal of CO2 Utilization, 28, 221-227.
[40] Guadalupe-Medina V, Wisselink HW, Luttik MA, de Hulster E, Daran JM, Pronk JT, van Maris AJ (2013). Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnology for Biofuels, 6, 125. DOI: 10.1186/1754-6834-6-125.
[41] Hart KM, Kulakova AN, Allen CC, Simpson AJ, Oppenheimer SF, Masoom H, Courtier-Murias D, Soong R, Kulakov LA, Flanagan PV, Murphy BT, Kelleher BP (2013). Tracking the fate of microbially sequestered carbon dioxide in soil organic matter. Environmental Science & Technology, 47, 5128-5137.
[42] Herter S, Farfsing J, Gad’On N, Rieder C, Eisenreich W, Bacher A, Fuchs G (2001). Autotrophic CO2 fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. Journal of Bacteriology, 183, 4305-4316.
[43] Hicks N, Vik U, Taylor P, Ladoukakis E, Park J, Kolisis F, Jakobsen KS (2017). Using prokaryotes for carbon capture storage. Trends in Biotechnology, 35, 22-32.
[44] Hicks Pries CE, Castanha C, Porras R, Phillips C, Torn MS (2018). Response to comment on “The whole-soil carbon flux in response to warming”. Science, 359, eaao0457. DOI: 10.1126/science.aao0457.
[45] Hu GP, Song W, Gao C, Guo L, Chen XL, Liu LM (2022). Advances in synthetic biology of CO2 fixation by heterotrophic microorganisms. Chinese Journal of Biotechnology, 38, 1339-1350.
  [胡贵鹏, 宋伟, 高聪, 郭亮, 陈修来, 刘立明 (2022). 异养微生物固定CO2的合成生物学研究进展. 生物工程学报, 38, 1339-1350.]
[46] Hu JJ, Li YL, Xu DS, Wang L (2009). Microbial CO2 fixation technology and its application. Chemical Industry Environmental Protection, 29, 122-125.
  [胡佳俊, 李艳丽, 徐殿胜, 王磊 (2009). 微生物固定CO2技术及其应用. 化工环保, 29, 122-125.]
[47] Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, Eisenreich W, Fuchs G (2008). A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proceedings of the National Academy of Sciences of the United States of America, 105, 7851-7856.
[48] Hügler M, Menendez C, Sch?gger H, Fuchs G (2002). Malonyl- coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. Journal of Bacteriology, 184, 2404-2410.
[49] Ivanovsky RN, Sintsov NV, Kondratieva EN (1980). ATP- linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Archives of Microbiology, 128, 239-241.
[50] Jiang JY (2019). Study on the Response of Autotrophic Bacterial Community and Microbial Carbon Sequestration to Soil Erosion Under Different Soil Types. Master degree dissertation, Hunan University, Changsha.
  [蒋婕妤 (2019). 不同土壤类型自养细菌群落与微生物固碳对侵蚀-沉积响应规律研究. 硕士学位论文, 湖南大学, 长沙.]
[51] Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV (2008). Structure, mechanism and regulation of pyruvate carboxylase. The Biochemical Journal, 413, 369-387.
[52] Jones RM, Goordial JM, Orcutt BN (2018). Low energy subsurface environments as extraterrestrial analogs. Frontiers in Microbiology, 9, 1605. DOI: 10.3389/fmicb.2018.01605.
[53] J?rgensen BB, Nelson DC (2004). Sulfide oxidation in marine sediments: geochemistry meets microbiology//Amend JP, Edwards KJ, Lyons TW. Sulfur Biogeochemistry—Past and Present. Geological Society of America, Washington D.C.
[54] Kallenbach CM, Frey SD, Grandy AS (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 13630. DOI: 10.1038/ncomms13630.
[55] Kidron GJ, Herrnstadt I, Barzilay E (2002). The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. Journal of Arid Environments, 52, 517-533.
[56] Kravchenko Irina K, Tikhonova Ekaterina N, Ulanova Ruzalia V, Menko Ekaterina V, Sukhacheva Marina V (2019). Effect of temperature on litter decomposition, soil microbial community structure and biomass in a mixed-wood forest in European Russia. Current Science, 116, 765-772.
[57] Krebs HA (1941). Carbon dioxide assimilation in heterotrophic organisms. Nature, 147, 560-563.
[58] Li BQ, Li Z, Sun XX, Wang Q, Xiao EZ, Sun WM (2018). DNA-SIP reveals the diversity of chemolithoautotrophic bacteria inhabiting three different soil types in typical karst rocky desertification ecosystems in Southwest China. Microbial Ecology, 76, 976-990.
[59] Li N, Wang BR, Huang YM, Huang Q, Jiao F, An SS (2022). Response of cbbL-harboring microorganisms to precipitation changes in a naturally-restored grassland. Science of the Total Environment, 838, 156191. DOI: 10.1016/j.scitotenv.2022.156191.
[60] Li PP, Chen WJ, Han YL, Wang DC, Zhang YT, Wu CF (2020). Effects of straw and its biochar applications on the abundance and community structure of CO2-fixing bacteria in a sandy agricultural soil. Journal of Soils and Sediments, 20, 2225-2235.
[61] Li ZW, Tong D, Nie XD, Xiao HB, Jiao PP, Jiang JY, Li Q, Liao WF (2021). New insight into soil carbon fixation rate: the intensive co-occurrence network of autotrophic bacteria increases the carbon fixation rate in depositional sites. Agriculture, Ecosystems & Environment, 320, 107579. DOI: 10.1016/j.agee.2021.107579.
[62] Liang C, Amelung W, Lehmann J, K?stner M (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25, 3578-3590.
[63] Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
[64] Liang X (2017). Effects of Phyllostachys Pubscens Invasion of Native Broadleaf Forest on Community Characteristics of Soil CO2-fixing Bacteria and Its Mechanism. Master degree dissertation, Zhejiang A&F University, Hangzhou.
  [梁雪 (2017). 毛竹入侵阔叶林对土壤固碳功能菌群落特征的影响及其机制. 硕士学位论文, 浙江农林大学, 杭州.]
[65] Liao H, Hao XL, Qin F, Delgado-Baquerizo M, Liu YR, Zhou JZ, Cai P, Chen WL, Huang QY (2023). Microbial autotrophy explains large-scale soil CO2 fixation. Global Change Biology, 29, 231-242.
[66] Liao H, Qin F, Wang K, Zhang YC, Hao XL, Chen WL, Huang QY (2020). Long-term chemical fertilization-driving changes in soil autotrophic microbial community depresses soil CO2 fixation in a Mollisol. Science of the Total Environment, 748, 141317. DOI: 10.1016/j.scitotenv.2020.141317.
[67] Liu JB, Kong WD, Zhang GS, Khan A, Guo GX, Zhu CM, Wei XJ, Kang SC, Morgan-Kiss RM (2016). Diversity and succession of autotrophic microbial community in high- elevation soils along deglaciation chronosequence. FEMS Microbiology Ecology, 92, fiw160. DOI: 10.1093/femsec/fiw160.
[68] Liu Z, Sun YF, Zhang YQ, Feng W, Lai ZR, Fa KY, Qin SG (2018). Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert. Soil Biology & Biochemistry, 125, 156-166.
[69] Liu M (2020). Responses of Soil Carbon-fixing Bacteria to Forest Types and Soil Physical and Chemical Properties in Zhejiang Province. Master degree dissertation, Zhejiang A&F University, Hangzhou.
  [刘茗 (2020). 浙江省森林土壤固碳细菌对植被类型和土壤理化性质的响应. 硕士学位论文, 浙江农林大学, 杭州.]
[70] Liu ZH, Wang K, Chen Y, Tan TW, Nielsen J (2020). Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis, 3, 274-288.
[71] Loffhagen N, Babel W (1982). Regulation of PEP-carboxylase of the facultative methylotrop Acetobacter sp. MB 58. Zeitschrift Fur Allgemeine Mikrobiologie, 22, 453-463.
[72] Long XE, Yao HY, Wang J, Huang Y, Singh BK, Zhu YG (2015). Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils. Environmental Science & Technology, 49, 7152-7160.
[73] López-Ballesteros A, Serrano-Ortiz P, Sánchez-Ca?ete EP, Oyonarte C, Kowalski AS, Pérez-Priego ó, Domingo F (2016). Enhancement of the net CO2 release of a semiarid grassland in SE Spain by rain pulses. Journal of Geophysical Research: Biogeosciences, 121, 52-66.
[74] Lu AH, Wang X, Li Y, Ding HR, Wang CQ, Zeng CP, Hao RX, Yang XX (2014). Mineral photoelectrons and their implications for the origin and early evolution of life on Earth. Science China: Earth Sciences, 57, 897-902.
[75] Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1.
[76] Mackelprang R, Saleska SR, Jacobsen CS, Jansson JK, Ta? N (2016). Permafrost meta-omics and climate change. Annual Review of Earth and Planetary Sciences, 44, 439-462.
[77] McHugh TA, Compson Z, van Gestel N, Hayer M, Ballard L, Haverty M, Hines J, Irvine N, Krassner D, Lyons T, Musta EJ, Schiff M, Zint P, Schwartz E (2017). Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiology Ecology, 93, fix116. DOI: 10.1093/femsec/fix116.
[78] Miltner A, Richnow HH, Kopinke FD, K?stner M (2004). Assimilation of CO2 by soil microorganisms and transformation into soil organic matter. Organic Geochemistry, 35, 1015-1024.
[79] Mistry AN, Ganta U, Chakrabarty J, Dutta S (2019). A review on biological systems for CO2 sequestration: organisms and their pathways. Environmental Progress & Sustainable Energy, 38, 127-136.
[80] Mitsch WJ, Gosselink JG (2008). Wetlands. 4th ed. John Wiley & Sons, Hoboken, USA.
[81] Mou Z, Kuang L, Zhang J, Li Y, Wu W, Liang C, Hui D, Lambers H, Sardans J, Pe?uela J, Liu J, Ren H, Liu Z (2023). Nutrient availability and stoichiometry mediate microbial effects on soil carbon sequestration in tropical forests. Soil Biology & Biochemistry, 186, 109186. DOI: 10.1016/j.soilbio.2023.109186.
[82] Murray J, Keith A, Singh B (2015). The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy. Soil Biology & Biochemistry, 89, 217-225.
[83] Nassoury N, Fritz L, Morse D (2001). Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. The Plant Cell, 13, 923-934.
[84] Nel JA, Cramer MD (2019). Soil microbial anaplerotic CO2 fixation in temperate soils. Geoderma, 335, 170-178.
[85] Novis PM, Whitehead D, Gregorich EG, Hunt JE, Sparrow AD, Hopkins DW, Elberling BO, Greenfield LG (2007). Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Global Change Biology, 13, 1224-1237.
[86] O’Leary MH (1982). Phosphoenolpyruvate carboxylase: an enzymologist’s view. Annual Review of Plant Physiology, 33, 297-315.
[87] Oh NH, Kim HS, Richter Jr. DD (2005). What regulates soil CO2 concentrations? A modeling approach to CO2 diffusion in deep soil profiles. Environmental Engineering Science, 22, 38-45.
[88] Paul JH, Alfreider A, Wawrik B (2000). Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Marine Ecology Progress Series, 198, 9-18.
[89] Qian MM, Xiao YL, Peng WT, Cao H (2015). Diversities of autotrophic CO2-fixing microbes in no-tillage paddy soils. China Environmental Science, 35, 3754-3761.
  [钱明媚, 肖永良, 彭文涛, 曹慧 (2015). 免耕水稻土固定CO2自养微生物多样性. 中国环境科学, 35, 3754-3761.]
[90] Ragsdale SW (1991). Enzymology of the acetyl-CoA pathway of CO2 fixation. Critical Reviews in Biochemistry and Molecular Biology, 26, 261-300.
[91] Ragsdale SW (1997). The eastern and western branches of the Wood/Ljungdahl pathway: How the east and west were won. BioFactors, 6, 3-11.
[92] Ragsdale SW (2008). Enzymology of the wood-Ljungdahl pathway of acetogenesis. Annals of the New York Academy of Sciences, 1125, 129-136.
[93] Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL (1983). Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. Journal of Biological Chemistry, 258, 2364-2369.
[94] Ragsdale SW, Pierce E (2008). Acetogenesis and the Wood- Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta, 1784, 1873-1898.
[95] Ragsdale SW, Wood HG (1985). Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. Journal of Biological Chemistry, 260, 3970-3977.
[96] Rao BQ, Liu YD, Wang WB, Hu CX, Li DH, Lan SB (2009). Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, Northwest China. Soil Biology & Biochemistry, 41, 2387-2393.
[97] Risk D, Kellman L, Beltrami H (2002). Carbon dioxide in soil profiles: production and temperature dependence. Geophysical Research Letters, 29, 1087. DOI: 10.1029/200/GL0/4002.
[98] Rojas BE, Hartman MD, Figueroa CM, Leaden L, Podestá FE, Iglesias AA (2019). Biochemical characterization of phosphoenolpyruvate carboxykinases from Arabidopsis thaliana. Biochemical Journal, 476, 2939-2952.
[99] Roslev P, Larsen MB, J?rgensen D, Hesselsoe M (2004). Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. Journal of Microbiological Methods, 59, 381-393.
[100] Rousk J, Brookes PC, B??th E (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75, 1589-1596.
[101] Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A (2011). CO2 utilizing microbes—A comprehensive review. Biotechnology Advances, 29, 949-960.
[102] Sato T, Atomi H, Imanaka T (2007). Archaeal type III Rubiscos function in a pathway for AMP metabolism. Science, 315, 1003-1006.
[103] Sauer U, Eikmanns BJ (2005). The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews, 29, 765-794.
[104] Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204-211.
[105] Sokol NW, Sanderman J, Bradford MA (2019). Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 25, 12-24.
[106] Sonntag K, Schwinde J, de Graaf AA, Marx A, Eikmanns BJ, Wiechert W, Sahm H (1995). 13C NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures. Applied Microbiology and Biotechnology, 44, 489-495.
[107] Spohn M, Müller K, H?schen C, Mueller CW, Marhan S (2020). Dark microbial CO2 fixation in temperate forest soils increases with CO2 concentration. Global Change Biology, 26, 1926-1935.
[108] Spona-Friedl M, Braun A, Huber C, Eisenreich W, Griebler C, Kappler A, Elsner M (2020). Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiology Ecology, 96, fiaa080. DOI: 10.1093/femsec/fiaa080.
[109] Strauss G, Fuchs G (1993). Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. European Journal of Biochemistry, 215, 633-643.
[110] Tabita FR (1999). Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynthesis Research, 60, 1-28.
[111] Tcherkez GGB, Farquhar GD, Andrews TJ (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proceedings of the National Academy of Sciences of the United States of America, 103, 7246-7251.
[112] Vemuri GN, Eiteman MA, Altman E (2002). Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Applied and Environmental Microbiology, 68, 1715-1727.
[113] Wang D, An Y, Han X, Zhou YY, Wang HL, Guo HH, Xia XL, Yin WL (2016). Over-expression of poplar RPEase gene promotes the growth and development of Arabidopsis thaliana. Journal of Beijing Forestry University, 38(5), 67-76.
  [王丹, 安轶, 韩潇, 周扬颜, 王厚领, 郭惠红, 夏新莉, 尹伟伦 (2016). 超表达杨树RPEase基因促进了拟南芥的生长发育. 北京林业大学学报, 38(5), 67-76.]
[114] Wang QY, Wu XH, Zhu ZK, Yuan HZ, Sui FG, Ge TD, Wu JS (2016). Effects of soil texture on autotrophic CO2 fixation bacterial communities and their CO2 assimilation contents. Environmental Science, 37, 3987-3995.
  [王群艳, 吴小红, 祝贞科, 袁红朝, 隋方功, 葛体达, 吴金水 (2016). 土壤质地对自养固碳微生物及其同化碳的影响. 环境科学, 37, 3987-3995.]
[115] Wang XY (2020). The Characteristics of Autotrophic CO2-fixing Microorganisms and Influence Factors in Soils and Groundwaters of Huixian Karst Wetland. Master degree dissertation, Huazhong University of Science and Technology, Wuhan.
  [汪夏雨 (2020). 会仙岩溶湿地土壤及地下水中自养固碳微生物群落特征及其环境影响因素. 硕士学位论文, 华中科技大学, 武汉.]
[116] Wang XY, Li W, Xiao YT, Cheng AQ, Shen TM, Zhu M, Yu LJ (2021). Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems. Catena, 204, 105418. DOI: 10.1016/j.catena.2021.105418.
[117] Watson GMF, Tabita FR (1997). Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiology Letters, 146, 13-22.
[118] Wei WL (2020). Investigation about the Response of Abundance and Activity of Autotrophic Microorganisms in Purple Soil to Environmental Factors. Master degree dissertation, Southwest University, Chongqing.
  [魏万玲 (2020). 紫色土自养微生物丰度及活性对环境因子的响应研究. 硕士学位论文, 西南大学, 重庆.]
[119] Wood HG, Werkman CH (1940). The relationship of bacterial utilization of CO2 to succinic acid formation. The Biochemical Journal, 34, 129-138.
[120] Wu XH, Ge TD, Yuan HZ, Li BZ, Zhu HH, Zhou P, Sui FG, O’Donnell AG, Wu JS (2014). Changes in bacterial CO2 fixation with depth in agricultural soils. Applied Microbiology and Biotechnology, 98, 2309-2319.
[121] Xiao HB, Li ZW, Chang XF, Deng L, Nie XD, Liu C, Liu L, Jiang JY, Chen J, Wang DY (2018). Microbial CO2 assimilation is not limited by the decrease in autotrophic bacterial abundance and diversity in eroded watershed. Biology and Fertility of Soils, 54, 595-605.
[122] Xiao YL (2017). Characteristic of CO2-fixation Bacteria’s Community Structure in Paddy Soils Under Elevated CO2Concentration. Master degree dissertation, Nanjing Agricultural University, Nanjing.
  [肖永良 (2017). 高浓度CO2条件下稻田土壤自养固碳细菌群落结构特征. 硕士学位论文, 南京农业大学, 南京.]
[123] Xu HJ, Wang XH, Li H, Yao HY, Su JQ, Zhu YG (2014). Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science & Technology, 48, 9391-9399.
[124] Yang W, Zhao H, Leng X, Cheng XL, An SQ (2017). Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of Eastern China. Catena, 156, 281-289.
[125] Yuan HZ, Ge TD, Chen CY, O’Donnell AG, Wu JS (2012a). Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology, 78, 2328-2336.
[126] Yuan HZ, Ge TD, Wu XH, Liu SL, Tong CL, Qin HL, Wu MN, Wei WX, Wu JS (2012b). Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/ oxygenase (Rubisco) large-subunit genes in paddy soil. Applied Microbiology and Biotechnology, 95, 1061-1071.
[127] Zarzycki J, Brecht V, Müller M, Fuchs G (2009). Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proceedings of the National Academy of Sciences of the United States of America, 106, 21317-21322.
[128] Zhao K, Kong WD, Wang F, Long XE, Guo CY, Yue LY, Yao HY, Dong XB (2018). Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biology & Biochemistry, 127, 230-238.
[129] Zhao Y, Liu PF, Rui JP, Cheng L, Wang Q, Liu X, Yuan Q (2020). Dark carbon fixation and chemolithotrophic microbial community in surface sediments of the cascade reservoirs, Southwest China. Science of the Total Environment, 698, 134316. DOI: 10.1016/j.scitotenv.2019.134316.
[130] Zheng JF, Chen JH, Pan GX, Liu XY, Zhang XH, Li LQ, Bian RJ, Cheng K, Zheng JW (2016). Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment, 571, 206-217.
[131] Zhuang Y (2013). Natural River and Lake Wetlands Carbon Sequestratzion Potential Evaluation and Discussion of Carbon Sink Trade Mechanism. Master degree dissertation, Inner Mongolia University, Hohhot.
  [庄洋 (2013). 内蒙古天然河湖湿地固碳潜力评估及碳汇交易机制探讨. 硕士学位论文, 内蒙古大学, 呼和浩特.]
文章导航

/

[an error occurred while processing this directive]