[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

中亚热带格氏栲林凋落物季节动态特征及其影响因素

  • 兰光飞 ,
  • 张强 ,
  • 陈相标 ,
  • 陈仕东 ,
  • 熊德成 ,
  • 刘小飞 ,
  • 杨智杰 ,
  • 杨玉盛
展开
  • 1福建师范大学地理科学学院, 福州 350007
    2福建三明森林生态系统国家野外科学观测研究站, 福建三明 365002

收稿日期: 2024-03-11

  录用日期: 2024-09-28

  网络出版日期: 2024-09-29

基金资助

国家自然科学基金(31930071);国家自然科学基金(32271727);福建省自然科学基金(2023I0010);国家科技基础资源调查专项(2021FY100702)

Seasonal dynamics of litterfall of a Castanopsis kawakamii evergreen broadleaf forest in mid-subtropical China and their influencing factors

  • LAN Guang-Fei ,
  • ZHANG Qiang ,
  • CHEN Xiang-Biao ,
  • CHEN Shi-Dong ,
  • XIONG De-Cheng ,
  • LIU Xiao-Fei ,
  • YANG Zhi-Jie ,
  • YANG Yu-Sheng
Expand
  • 1School of Geographical Science, Fujian Normal University, Fuzhou 350007, China
    2and Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian 365002, China
*YANG Zhi-Jie(zhijieyang@fjnu.edu.cn)

Received date: 2024-03-11

  Accepted date: 2024-09-28

  Online published: 2024-09-29

Supported by

National Natural Science Foundation of China(31930071);National Natural Science Foundation of China(32271727);Natural Science Foundation of Fujian Province(2023I0010);National Science and Technology Basic Resources Survey Program of China(2021FY100702)

摘要

凋落物在森林生态系统养分循环过程中发挥着重要作用。亚热带常绿阔叶林凋落物产量及其组成常表现出多峰的季节变化特征, 但其影响机制尚不明确。该研究以福建三明格氏栲自然保护区内的格氏栲(Castanopsis kawakamii)常绿阔叶天然林为研究对象, 对其地上不同组分的凋落物产量和环境因子进行了5年(2018-2022年)的连续定位观测。结果表明: 1)该天然林的年凋落物量在4 949.17-6 873.45 kg·hm-2·a-1之间, 其中各组分占比为落叶(66.63%) >碎屑(16.07%) >落枝(12.78%) >落果(4.64%)。2)凋落物总量的季节动态呈现三峰型, 第一个峰出现在3-5月, 第二个峰在7-8月, 第三个峰在9-12月。其中, 叶凋落物、果凋落物季节动态呈现双峰型, 叶凋落物高峰值分别出现在4和8月, 而果凋落物高峰主要集中在3和12月。枝凋落物和碎屑凋落物季节动态呈现三峰型, 枝凋落物高峰值分别出现在5、8和12月, 碎屑凋落物的高峰分别出现在4、8和12月。3)随机森林模型预测结果表明, 影响凋落物季节动态的主要环境因子分别是月降雨量、气温和日间降雨时长。其中, 3-5月凋落物量随着日间降雨时长和土壤含水率的增加而减少, 7-8月凋落物量随着土壤含水率和日间光合有效辐射的增加而增加。因此, 降雨量及其发生时段等直接与间接作用是影响中亚热带常绿阔叶林凋落物产量及季节动态特征的重要因素。

本文引用格式

兰光飞 , 张强 , 陈相标 , 陈仕东 , 熊德成 , 刘小飞 , 杨智杰 , 杨玉盛 . 中亚热带格氏栲林凋落物季节动态特征及其影响因素[J]. 植物生态学报, 2024 , 48(12) : 1589 -1601 . DOI: 10.17521/cjpe.2024.0069

Abstract

Aims Litterfall plays a pivotal role in nutrient cycling in forest ecosystems. The yield and composition of litterfall typically exhibit seasonal variations in subtropical evergreen broadleaf forests, however, the mechanisms underlying the patterns are largely unknown.

Methods Evergreen broadleaf forests were taken as the research object in the Castanopsis kawakamii nature reserve in Sanming, Fujian Province. The litterfall yield and environmental factors were monitored every month during 2018-2022.

Important findings Our results showed that 1) The annual litterfall yield ranged from 4 949.17 to 6 873.45 kg·hm-2·a-1, with leaves accounting for 66.63% of the litterfall. The yield of litterfall components ranked as leaves (66.63%) > miscellany (16.07%) > branches (12.78%) > fruit (4.64%). 2) The seasonal dynamics of total litterfall yield exhibited a trimodal pattern during the year, with the first peak observed from March to May, the second peak observed from July to August, and the third peak found from September to December. Leaf litterfall and fruit litterfall displayed bimodal patterns during the year, with leaf litterfall peaking at April and August, and fruit litterfall peaking at March and December, respectively. The seasonal dynamics of branch litterfall and debris litterfall showed trimodal patterns, with branch litterfall peaking in May, August, and December. Debris litterfall peaked in April, August, and December. 3) Random forest models indicated that the primary environmental factors affecting the seasonal dynamics of litterfall were monthly precipitation, air temperature, and daytime rain duration. The litterfall yield decreased with increasing daytime rain duration and soil moisture during March to May, while it increased with increasing soil moisture and daytime photosynthetically active radiation from July to August. Overall, precipitation and the timing of rainfall events play direct and indirect roles in influencing the litterfall yield and seasonal dynamics in the evergreen broadleaf forests in the mid-subtropical region.

[an error occurred while processing this directive]

参考文献

[1] Asner GP, Alencar A (2010). Drought impacts on the Amazon forest: the remote sensing perspective. New Phytologist, 187, 569-578.
[2] Chen TC, Wang SY, Huang WR, Yen MC (2004). Variation of the east Asian summer monsoon rainfall. Journal of Climate, 17, 744-762.
[3] Dai SY, Wei T, Tang J, Xu ZX, Gong HD (2023). Temporal changes in litterfall and nutrient cycling from 2005-2015 in an evergreen broad-leaved forest in the Ailao Mountains, China. Plants, 12, 1277. DOI: 10.3390/ plants12061277.
[4] Dai YH, Gong FX, Yang XQ, Chen XZ, Su YX, Liu LY, Wu JP, Liu XD, Sun QL (2022). Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China. Journal of Plant Ecology, 15, 320-334.
[5] Deng XX, Wang ZC, Li C, Guo H, Jin KC (2017). Seasonal dynamics of the litter fall production of evergreen broadleaf forest and its relationships with meteorological factors at Tiantong of Zhejiang Province. Journal of Central South University of Forestry & Technology, 37(3), 73-78.
  [ 邓秀秀, 王忠诚, 李程, 郭灏, 金珂丞 (2017). 浙江天童常绿阔叶林凋落物量季节动态及其与气象因子的关系. 中南林业科技大学学报, 37(3), 73-78.]
[6] Detto M, Wright SJ, Calderón O, Muller-Landau HC (2018). Resource acquisition and reproductive strategies of tropical forest in response to the El Ni?o-Southern Oscillation. Nature Communications, 9, 913. DOI: 10.1038/s41467-018-03306-9.
[7] Ding YH, Si D, Liu YJ, Wang ZY, Li Y, Zhao L, Song YF (2018). On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese Journal of Atmospheric Sciences, 42, 533-558.
  [ 丁一汇, 司东, 柳艳菊, 王遵娅, 李怡, 赵亮, 宋亚芳 (2018). 论东亚夏季风的特征、驱动力与年代际变化. 大气科学, 42, 533-558.]
[8] Fox J, Weisberg S (2019). An R Companion to Applied Regression. 3rd ed. Sage Publications, New York.
[9] Gao W, Huang MG, Huang YR, Wu XS, Fang DL, Chen AP, Huang SD (2023). Dynamic characteristics of litterfall and carbon and nitrogen return in three forest types in subtropical China. Research of Soil and Water Conservation, 30(4), 146-153.
  [ 高伟, 黄茂根, 黄雍容, 吴兴盛, 方栋龙, 陈爱平, 黄石德 (2023). 亚热带3种森林凋落物量及碳氮归还动态变化. 水土保持研究, 30(4), 146-153.]
[10] Greenwell BM (2017). pdp: an R package for constructing partial dependence plots. The R Journal, 9, 421-436.
[11] Guan LL, Zhou GY, Zhang DQ, Liu JX, Zhang QM (2004). Twenty years of litter fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan forest ecosystem research station. Acta Phytoecologica Sinica, 28, 449-456.
  [ 官丽莉, 周国逸, 张德强, 刘菊秀, 张倩媚 (2004). 鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究. 植物生态学报, 28, 449-456.]
[12] Guan X, Huang K, Yan SK, Wang SL (2021). A dataset of litter recovery amount and standing crop dynamics in middle subtropical broad-leaved evergreen forests (2005-2015). China Scientific Data, 6, 205-212.
  [ 关欣, 黄苛, 颜绍馗, 汪思龙 (2021). 2005-2015年中亚热带常绿阔叶林凋落物回收量和现存量月动态数据集. 中国科学数据, 6, 205-212.]
[13] Guo J, Yu LH, Fang X, Xiang WH, Deng XW, Lu X (2015). Litter production and turnover in four types of subtropical forests in China. Acta Ecologica Sinica, 35, 4668-4677.
  [ 郭婧, 喻林华, 方晰, 项文化, 邓湘雯, 路翔 (2015). 中亚热带4种森林凋落物量、组成、动态及其周转期. 生态学报, 35, 4668-4677.]
[14] Guo JF, Chen GS, Qian W, Yang SH, Yang YS, Zheng QR (2006). Litter production and nutrient return in two natural forests and a Cunninghamia lanceolata plantation in Wanmulin Nature Reserve. Acta Ecologica Sinica, 26, 4091-4098.
  [ 郭剑芬, 陈光水, 钱伟, 杨少红, 杨玉盛, 郑群瑞 (2006). 万木林自然保护区2种天然林及杉木人工林凋落量及养分归还. 生态学报, 26, 4091-4098.]
[15] Huang SD, Huang YR, Gao W, Nie S, Cai B, Lin J (2020). Dynamics of litterfall and nutrient return in three typical forests of Wuyi Mountain along altitudinal gradient. Journal of Tropical and Subtropical Botany, 28, 394-402.
  [ 黄石德, 黄雍容, 高伟, 聂森, 蔡斌, 林捷 (2020). 沿海拔梯度武夷山3种典型森林凋落物及养分归还动态. 热带亚热带植物学报, 28, 394-402.]
[16] Jackson MB, Ram PC (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, 227-241.
[17] Kramer K, Leinonen I, Loustau D (2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology, 44, 67-75.
[18] Li AG, Fan YX, Chen SL, Song HW, Lin CF, Yang YS (2022a). Soil warming did not enhance leaf litter decomposition in two subtropical forests. Soil Biology & Biochemistry, 170, 108716. DOI: 10.1016/j.soilbio.2022.108716.
[19] Li YN, Deng Y, Cheung HN, Zhou W, Yang S, Zhang HN (2022b). Amplifying subtropical hydrological transition over China in early summer tied to weakened mid-latitude synoptic disturbances. NPJ Climate and Atmospheric Science, 5, 40. DOI: 10.1038/s41612-022-00259-1.
[20] Liaw A, Wiener M (2002). Classification and regression by randomForest. R News, 2, 18-22.
[21] Lin TC, Hogan JA, Chang CT (2020). Tropical cyclone ecology: a scale-link perspective. Trends in Ecology & Evolution, 35, 594-604.
[22] Liu C, Westman CJ, Berg B, Kutsch W, Wang G, Man R, Ilvesniemi H (2004). Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13, 105-114.
[23] Liu L, Shen GZ, Chen FQ, Luo L, Xie ZQ, Yu J (2012). Dynamic characteristics of litterfall and nutrient return of four typical forests along the altitudinal gradients in Mt. Shennongjia, China. Acta Ecologica Sinica, 32, 2142-2149.
  [ 刘蕾, 申国珍, 陈芳清, 罗璐, 谢宗强, 喻杰 (2012). 神农架海拔梯度上4种典型森林凋落物现存量及其养分循环动态. 生态学报, 32, 2142-2149.]
[24] Liu L, Gong F, Chen X, Su Y, Fan L, Wu S, Yang X, Zhang J, Yuan W, Ciais P, Zhou C (2022). Bidirectional drought-related canopy dynamics across pantropical forests: a satellite-based statistical analysis. Remote Sensing in Ecology and Conservation, 8, 72-91.
[25] Liu XD, Feng YJ, Zhao XY, Cui ZJ, Liu PL, Chen XZ, Zhang QM, Liu JX (2024). Climatic drivers of litterfall production and its components in two subtropical forests in South China: a 14-year observation. Agricultural and Forest Meteorology, 344, 109798. DOI: 10.1016/j.agrformet.2023.109798.
[26] Loo YY, Billa L, Singh A (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6, 817-823.
[27] Lu XQ, Yu H, Ying M, Zhao BK, Zhang S, Lin LM, Bai LN, Wan RJ (2021). Western North Pacific tropical cyclone database created by the China meteorological administration. Advances in Atmospheric Sciences, 38, 690-699.
[28] Midi H, Bagheri A (2010). Robust multicollinearity diagnostic measure in collinear data set//Mastorakis NE, Mladenov V, Bojkovic Z. Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, USA.
[29] Morffi-Mestre H, ángeles-Pérez G, Powers JS, Andrade JL, Huechacona Ruiz AH, May-Pat F, Chi-May F, Dupuy JM (2020). Multiple factors influence seasonal and interannual litterfall production in a tropical dry forest in Mexico. Forests, 11, 1241. DOI: 10.3390/f11121241.
[30] Portillo-Estrada M, Korhonen JFJ, Pihlatie M, Pumpanen J, Frumau AKF, Morillas L, Tosens T, Niinemets ü (2013). Inter- and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests. Annals of Forest Science, 70, 367-379.
[31] Qiu LB, Xiao TQ, Bai TJ, Mo XY, Huang JH, Deng WP, Liu YQ (2023). Seasonal dynamics and influencing factors of litterfall production and carbon input in typical forest community types in Lushan Mountain, China. Forests, 14, 341. DOI: 10.3390/f14020341.
[32] Seber GAF, Wild CJ (2003). Nonlinear Regression. Wiley-Interscience, New York.
[33] Shen GR, Chen DM, Wu Y, Liu L, Liu CJ (2019). Spatial patterns and estimates of global forest litterfall. Ecosphere, 10, e02587. DOI: 10.1002/ecs2.2587.
[34] Shi JZ, Xu H, Lin MX, Li YD (2019). Dynamics of litterfall production in the tropical mountain rainforest of Jianfengling, Hainan Island, China. Plant Science Journal, 37, 593-601.
  [ 石佳竹, 许涵, 林明献, 李意德 (2019). 海南尖峰岭热带山地雨林凋落物产量及其动态. 植物科学学报, 37, 593-601.]
[35] Song TC, Da LJ (2016). Evergreen broad-leaved forest of East Asia//Box EO. Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Springer, New York. 101-128.
[36] Song YJ, Tian WB, Liu XY, Yin F, Cheng JY, Zhu DN, Arshad A, Yan ER (2016). Associations between litterfall dynamics and micro-climate in forests of Putuoshan Island, Zhejiang, China. Chinese Journal of Plant Ecology, 40, 1154-1163.
  [ 宋彦君, 田文斌, 刘翔宇, 尹芳, 程浚洋, 朱丹妮, Arshad A, 阎恩荣 (2016). 浙江普陀山岛森林凋落物动态与微气候的关联性. 植物生态学报, 40, 1154-1163.]
[37] Staelens J, Nachtergale L, de Schrijver A, Vanhellemont M, Wuyts K, Verheyen K (2011). Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68, 89-98.
[38] Sun M, Sung HM, Kim J, Lee JH, Shim S, Byun YH (2022). Present-day and future projection of East Asian summer monsoon in Coupled Model Intercomparison Project 6 simulations. PLoS ONE, 17, e0269267. DOI: 10.1371/journal.pone.0269267.
[39] Vitousek PM, Gerrish G, Turner DR, Walker LR, Mueller-Dombois D (1995). Litterfall and nutrient cycling in four Hawaiian montane rainforests. Journal of Tropical Ecology, 11, 189-203.
[40] Wan CH, Tao C, Yang XB, Huang J, Feng DD, Yang Q, Zhou WS (2014). Litter production of different types of forests in Hainan and its impact factors. Journal of Tropical Biology, 5, 153-161.
  [ 万春红, 陶楚, 杨小波, 黄瑾, 冯丹丹, 杨琦, 周文嵩 (2014). 海南岛不同森林类型凋落物产量及其影响因素. 热带生物学报, 5, 153-161.]
[41] Wang JJ, Wang YJ, Lai LM, Zhao XC, Wang F, Shen GZ, Lai JS, Lu HB, Zhao CQ, Zheng YR (2013). Litter production and decomposition of different forest ecosystems and their relations to environmental factors in different climatic zones of mid and Eastern China. Acta Ecologica Sinica, 33, 4818-4825.
  [ 王健健, 王永吉, 来利明, 赵学春, 王飞, 申国珍, 赖江山, 鲁洪斌, 赵春强, 郑元润 (2013). 我国中东部不同气候带成熟林凋落物生产和分解及其与环境因子的关系. 生态学报, 33, 4818-4825.]
[42] Wang ZH, Wang XH, Shen GC (2014). Effects of typhoon disturbance on the litter production in an evergreen broad-leaved forest in the Tiantong, Zhejiang. Journal of East China Normal University (Natural Science),(1), 79-89.
  [ 王樟华, 王希华, 沈国春 (2014). 台风干扰对天童常绿阔叶林凋落物量的影响. 华东师范大学学报(自然科学版), (1), 79-89.]
[43] Wei YJ, Zhao L (2020). Seasonal dynamics of litterfall and C, N, and P stoichiometric characteristics of six tree species in an evergreen broad-leaved forest on Jinyun Mountains. Forest Research, 33(6), 73-80.
  [ 魏玉洁, 赵亮 (2020). 缙云山常绿阔叶林6个树种凋落叶量及其C、N、P化学计量学季节动态研究. 林业科学研究, 33(6), 73-80.]
[44] Wu JJ, Yang ZJ, Weng FJ, Liu XF, Chen CQ, Lin WS, Wang XH, Chen T (2014). Comparison of soil respiration in natural Castanopsis carlesii forest and plantation forest. Environmental Science, 35, 2426-2432.
  [ 吴君君, 杨智杰, 翁发进, 刘小飞, 陈朝琪, 林伟盛, 王小红, 陈坦 (2014). 米槠天然林和人工林土壤呼吸的比较研究. 环境科学, 35, 2426-2432.]
[45] Wu JP, Su YX, Chen XZ, Liu LY, Yang XQ, Gong FX, Zhang HO, Xiong X, Zhang DQ (2021). Leaf shedding of Pan-Asian tropical evergreen forests depends on the synchrony of seasonal variations of rainfall and incoming solar radiation. Agricultural and Forest Meteorology, 311, 108691. DOI: 10.1016/j.agrformet.2021.108691.
[46] Wu QQ, Wang CK, Zhang QZ (2017). Inter- and intra-annual dynamics in litter production for six temperate forests. Acta Ecologica Sinica, 37, 760-769.
  [ 武启骞, 王传宽, 张全智 (2017). 6种温带森林凋落量年际及年内动态. 生态学报, 37, 760-769.]
[47] Xia LH, Wu HM, Liu M, Leng DS, Li TT (2014). Characteristic analysis of storm surges along Fujian coast associated with tropical cyclones. Journal of Tropical Oceanography, 33(3), 40-45.
  [ 夏丽花, 邬惠明, 刘铭, 冷典颂, 李婷婷 (2014). 热带气旋影响福建沿海风暴潮特征分析. 热带海洋学报, 33(3), 40-45.]
[48] Xing JM, Wang KQ, Song YL, Zhang YJ, Zhang ZM, Pan TS (2021). Characteristics of litter return and nutrient dynamic change in four typical forests in the subalpine of central Yunnan Province. Journal of Central South University of Forestry & Technology, 41(8), 134-144.
  [ 邢进梅, 王克勤, 宋娅丽, 张雨鉴, 张转敏, 潘天森 (2021). 滇中亚高山4种典型林分凋落物归还及养分动态变化特征. 中南林业科技大学学报, 41(8), 134-144.]
[49] Yan JH, Wang YP, Zhou GY, Zhang DQ (2006). Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 12, 810-821.
[50] Yang C (2016). Dynamics of Litterfall of Evergreen Broad-leaved Forest on Jinyun Mountain. Master degree dissertation, Chongqing University, Chongqing.
  [ 杨超 (2016) 缙云山常绿阔叶林凋落物量及动态研究. 硕士学位论文, 重庆大学, 重庆.]
[51] Yang YS, Guo JF, Chen GS, Xie JS, Cai LP, Lin P (2004). Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China. Annals of Forest Science, 61, 465-476.
[52] Yang ZJ, Chen GS, Xie JS, Yang YS (2010). Litter fall production and carbon return in Cunninghamia lanceolata, Schima superba, and their mixed plantations. Chinese Journal of Applied Ecology, 21, 2235-2240.
  [ 杨智杰, 陈光水, 谢锦升, 杨玉盛 (2010). 杉木、木荷纯林及其混交林凋落物量和碳归还量. 应用生态学报, 21, 2235-2240.]
[53] Yuan F, Huang L, Wei YJ, Qian SH, Zhao L, Yang YC (2018). Litterfall production and its relationships with climatic factors in Chinese natural forests. Chinese Journal of Ecology, 37, 3038-3046.
  [ 袁方, 黄力, 魏玉洁, 钱深华, 赵亮, 杨永川 (2018). 中国天然林凋落物量特征及其与气候因子的关系. 生态学杂志, 37, 3038-3046.]
[54] Zhang HC, Yuan WP, Dong WJ, Liu SG (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 240-247.
[55] Zhang JY, Wu LG, Ren FM, Cui XP (2013). Changes in tropical cyclone rainfall in China. Journal of the Meteorological Society of Japan Ser. II, 91, 585-595.
[56] Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY (2008). Litter fall production in relation to environmental factors in Northeast China’s forests. Journal of Plant Ecology (Chinese Version), 32, 1031-1040.
  [ 张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 (2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.]
[57] Zhang YH, Chen J, Xu C, Xiong DC, Yang ZJ, Chen SD, Mao C (2023). Effects of warming on quantity and structure of litter-derived dissolved organic matter in subtropical natural Castanopsis kawakamii forests. Chinese Journal of Applied Ecology, 34, 946-954.
  [ 张宇辉, 陈娟, 胥超, 熊德成, 杨智杰, 陈仕东, 毛超 (2023). 增温对亚热带格氏栲天然林凋落物可溶性有机质数量和结构的影响. 应用生态学报, 34, 946-954.]
[58] Zhou L, Shalom ADD, Wu P, Li S, Jia Y, Ma X (2015). Litterfall production and nutrient return in different-aged Chinese fir (Cunninghamia lanceolata) plantations in South China. Journal of Forestry Research, 26, 79-89.
[59] Zhu Y, Yang YC, Zhou LH, Long YX, Huang L, Chen H (2023). Litterfall amount and dynamic characteristics of evergreen broad-leaved forest in Jinyun Mountain. Science of Soil and Water Conservation, 21(3), 110-118.
  [ 朱茵, 杨永川, 周礼华, 龙宇潇, 黄力, 陈华 (2023). 缙云山常绿阔叶林凋落物量及动态特征. 中国水土保持科学, 21(3), 110-118.]
文章导航

/

[an error occurred while processing this directive]