[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Chinese Journal of Plant Ecology >
Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China
Received date: 2021-07-26
Accepted date: 2021-09-26
Online published: 2021-12-16
Supported by
Applied Technology Research and Development Fund of Inner Mongolia(2021GG0088);Inner Mongolia Major Projects and Achievements Transformation Projects(ZDZX2018020);Inner Mongolia Major Projects and Achievements Transformation Projects(2019CG069)
Aims Plant phenology is an important indicator of ecosystem response to climate change, and it is also a central parameter for modelling plant productivity and vegetation dynamics. However, it remains unclear whether inner-annual, intra-annual, inter-species or inter-habitat variabilities exist in the response of plant phenology to environmental changes.
Methods Here we investigated the effects of long-term (>10 years) warming and nitrogen (N) addition on plant phenology in a temperate desert steppe. We used the phenological scoring observation method and Richards growth curve fitting method to monitor phenological shifts of three dominant species, Stipa breviflora, Artemisia frigida and Kochia prostrata, in the 11th, 12th and 13th treatment year.
Important findings We found that the flowering time ranged from the 129th to the 145th days of a year for S. breviflora, from the 230th to the 248th days for A. frigida, and from the 194th to the 222th days for K. prostrata. Warming and N addition tended to advance the flowering time of S. breviflora and K. prostrata, but tended to delay the flowering time of A. frigida. The fruiting time ranged from the 134th to the 148th days for S. breviflora, from the 241th to the 260th days for A. frigida, and from the 207th to the 231th days for K. prostrata. Warming and N addition tended to advance the fruiting time of S. breviflora and K. prostrata, but tended to delay that of A. frigida. The reproductive growth period lasted for 12 to 25 days for S. breviflora, 48 to 55 days for A. frigida, and 45 to 77 days for K. prostrata. Warming and N addition shortened the reproductive growth period for S. breviflora, but prolonged that period for A. frigida and K. prostrata.
Key words: desert steppe; plant phenology; warming; nitrogen deposition; precipitation
TIAN Lei, ZHU Yi, LI Xin, HAN Guo-Dong, REN Hai-Yan . Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2022 , 46(3) : 290 -299 . DOI: 10.17521/cjpe.2021.0277
[1] | Dai WJ, Jin HY, Zhang YH, Zhou ZQ, Liu T (2020). Advances in plant phenology. Acta Ecologica Sinica, 40, 6705-6719. |
[1] | [代武君, 金慧颖, 张玉红, 周志强, 刘彤 (2020). 植物物候学研究进展. 生态学报, 40, 6705-6719.] |
[2] | Gao FG, Han GD, Shi FL, Wang Z, Li YH, Li N, Zhang LZ (2010). Responses of reproductive phenology and photosynthetic rate of Stipa breviflora under warming and nitrogen addition. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 31(2), 104-108. |
[2] | [高福光, 韩国栋, 石凤翎, 王珍, 李元恒, 李娜, 张利枝 (2010). 短花针茅生殖物候和光合作用对增温和施氮的响应. 内蒙古农业大学学报(自然科学版), 31(2), 104-108.] |
[3] | Gu RY, Zhou WC, Bai ML, Li XC, Di RQ, Yang J (2012). Impacts of climate change on phenological phase of herb in the main grassland in Inner Mongolia. Acta Ecologica Sinica, 32, 767-776. |
[3] | [顾润源, 周伟灿, 白美兰, 李喜仓, 邸瑞琦, 杨晶 (2012). 气候变化对内蒙古草原典型植物物候的影响. 生态学报, 32, 767-776.] |
[4] | Huang WL, Zhang Q, Kong DD, Gu XH, Sun P, Hu P (2019). Response of vegetation phenology to drought change in Inner Mongolia from 1982 to 2013. Acta Ecologica Sinica, 39, 4953-4965. |
[4] | [黄文琳, 张强, 孔冬冬, 顾西辉, 孙鹏, 胡畔 (2019). 1982-2013年内蒙古地区植被物候对干旱变化的响应. 生态学报, 39, 4953-4965.] |
[5] | IPCC (The Intergovernmental Panel on Climate Change) (2018). Global Warming of 1.5 ℃. Cambridge University Press, Cambridge, UK. |
[6] | Li YH, Han GD, Wang Z, Zhao ML, Wang ZW, Zhao HB (2014). Influences of warming and nitrogen addition on plant reproductive phenology in Inner Mongolia desert steppe. Chinese Journal of Ecology, 33, 849-856. |
[6] | [李元恒, 韩国栋, 王珍, 赵萌莉, 王正文, 赵鸿彬 (2014). 增温和氮素添加对内蒙古荒漠草原植物生殖物候的影响. 生态学杂志, 33, 849-856.] |
[7] | Liu B (2015). Effects of Day and Night Warming on Plant Reproductive Phenology in a Temperate Steppe of Northern China. Master degree dissertation, Henan University, Kaifeng, Henan. |
[7] | [刘斌 (2015). 中国北方典型草原植物生殖物候对白天和夜间增温的响应. 硕士学位论文, 河南大学, 河南开封.] |
[8] | Miao BL, Liang CZ, Han F, Liang MW, Zhang ZG (2016). Responses of phenology to climate change over the major grassland types. Acta Ecologica Sinica, 36, 7689-7701. |
[8] | [苗百岭, 梁存柱, 韩芳, 梁茂伟, 张自国 (2016). 内蒙古主要草原类型植物物候对气候波动的响应. 生态学报, 36, 7689-7701.] |
[9] | Ni L, Wu J, Li CB, Qin GX, Li Z, Kong J (2020). Temporal and spatial variations in natural grassland phenology in China over the last 30 years. Acta Prataculturae Sinica, 29(1), 1-12. |
[9] | [倪璐, 吴静, 李纯斌, 秦格霞, 李政, 孔婕 (2020). 近30年中国天然草地物候时空变化特征分析. 草业学报, 29(1), 1-12.] |
[10] | Piao SL, Liu Q, Chen AP, Janssens IA, Fu YS, Dai JH, Liu LL, Lian X, Shen MG, Zhu XL (2019). Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25, 1922-1940. |
[11] | Qiao Y (2017). Parameters Estimation of Richards Growth Curve Equation and Equations. Master degree dissertation, Northeast Forestry University, Harbin. |
[11] | [乔钰 (2017). Richards增长曲线方程及其方程组的参数估计. 硕士学位论文, 东北林业大学, 哈尔滨.] |
[12] | Ren HY, Han GD, Li MH, Gao CP, Jiang L (2021). Ethylene-regulated leaf lifespan explains divergent responses of plant productivity to warming among three hydrologically different growing seasons. Global Change Biology, 27, 4169-4180. |
[13] | Richards FJ (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10(29), 290-300. |
[14] | Sun XY, Liu HX, Zhao YL, Yang NN, Wang W (2019). Spatio-temporal evolution of grassland phenology and its response to meteorological factors in Xilin Gol league. Journal of Hebei University of Engineering (Natural Science Edition), 36(2), 79-82. |
[14] | [孙秀云, 刘海新, 赵玉玲, 杨楠楠, 王炜 (2019). 锡林郭勒盟草地物候期的时空演变及其对气候的响应. 河北工程大学学报(自然科学版), 36(2), 79-82.] |
[15] | Wang GC, Huang Y, Wei YR, Zhang W, Li TT, Zhang Q (2019). Inner Mongolian grassland plant phenological changes and their climatic drivers. Science of the Total Environment, 683, 1-8. |
[16] | Wang SQ, Zhou GS, Zhou MZ, Lyv XM, Zhou L, Ji YH (2021). Photosynthetically physiological mechanism of Stipa krylovii withered and yellow phenology response to precipitation under the background of warming. Chinese Journal of Applied Ecology, 32, 845-852. |
[16] | [王思琪, 周广胜, 周梦子, 吕晓敏, 周莉, 汲玉河 (2021). 增温背景下克氏针茅枯黄期物候对降水响应的光合生理机制. 应用生态学报, 32, 845-852.] |
[17] | Xia JY, Wan SQ (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 111, 1207-1217. |
[18] | Yang Q, Guo D (2017). Comparative analysis of strength criterion based on 1stOpt. Journal of Chengdu Normal University, 33(5), 118-124. |
[18] | [杨群, 郭东 (2017). 基于1stOpt的强度准则的对比研究. 成都师范学院学报, 33(5), 118-124.] |
[19] | Zheng JY, Ge QS, Hao ZX (2002). Effects of climate warming on plant phenology in China during the past 40 years. Chinese Science Bulletin, 47, 1582-1587. |
[19] | [郑景云, 葛全胜, 郝志新 (2002). 气候增暖对我国近40年植物物候变化的影响. 科学通报, 47, 1582-1587.] |
[20] | Zheng LF, Zhao HY, Liu GZ (2004). Study on the extending for Richards model. Journal of Northwest A&F University (Natural Science Edition), 32(8), 107-110. |
[20] | [郑立飞, 赵惠燕, 刘光祖 (2004). Richards模型的推广研究. 西北农林科技大学学报(自然科学版), 32(8), 107-110.] |
[21] | Zhu KZ (1972). Chinaʼs nearly five thousand years, a preliminary study on climate change. Journal of Archaeological, (1), 15-38. |
[21] | [竺可桢 (1972). 中国近五千年来气候变迁的初步研究. 考古学报, (1), 15-38.] |
[22] | Zhu KZ, Wan MW (1973). Phenology. Science Press, Beijing. |
[22] | [竺可桢, 宛敏渭 (1973). 物候学. 科学出版社, 北京.] |
/
〈 |
|
〉 |