[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Review

Ecological functions of vascular epiphytes in habitat construction

Expand
  • 1Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Haikou 570228, China
    2Center for Terrestrial Biodiversity of the South China Sea, School of Ecology and Environment, Hainan University, Haikou 570228, China

Received date: 2022-11-10

  Accepted date: 2023-02-24

  Online published: 2023-02-24

Supported by

The Hainan Natural Science Foundation(322RC569);The Hainan Natural Science Foundation(321QN188);The National Natural Science Foundation of China(32201347)

Abstract

In forest ecosystems, vascular epiphytes in the forest canopy act as buffers against environmental pressures, create important habitats for other organisms, increase the complexity of forest ecosystems, and enhance species diversity and community stability. Vascular epiphytes can create distinct habitat forms and perform unique ecological functions. Based on their morphological functional characteristics, they can be categorized into two groups: collecting plants and ant-nest plants. The former group includes “trash-basket” and “tank-form” plants, while the latter group includes “ant-garden” and “ant-house” plants. The present paper discusses the positive effect of vascular epiphytes on canopy biodiversity through the creation of habitats. It reveals the existence of these microhabitats can increase the complexity of the canopy community structure and food web, thereby promoting community stability. Additionally, we analyze how herbivorous defense and nutrient acquisition promote the evolution of special structures of vascular epiphytes for creating habitats, and the impact of these structures on the evolution of other canopy organisms. Drawing on the current research hotspots in canopy science, this paper explores the role of habitat-constructing vascular epiphytes in the three prominent areas: biological interactions in forest canopies, community succession, and responses to global change. This paper highlights the role of habitat-constructing vascular epiphytes as “umbrella species” with significant conservation value in the face of global change. We suggested to strengthen the research on the evolutionary history and ecological functions of different types of vascular epiphytes, and to explore the biodiversity conservation strategies for tropical and subtropical forests ecosystems in the context of global change.

Cite this article

ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe . Ecological functions of vascular epiphytes in habitat construction[J]. Chinese Journal of Plant Ecology, 2023 , 47(7) : 895 -911 . DOI: 10.17521/cjpe.2022.0454

[an error occurred while processing this directive]

References

[1] Abdullah NS, Ahmad WYW, Sabri NA (2017). New compounds from Hydnophytum formicarum young tubers. Malaysian Journal of Analytical Sciences, 21, 778-783.
[2] Adhikari YP, Fischer A, Fischer HS (2012). Micro-site conditions of epiphytic orchids in a human impact gradient in Kathmandu valley, Nepal. Journal of Mountain Science, 9, 331-342.
[3] Aguilar R, Cristóbal Pérez EJ, Balvino-Olvera FJ, de Jesús Aguilar-Aguilar M, Aguirre-Acosta N, Ashworth L, Lobo JA, Martén-Rodríguez S, Fuchs EJ, Sanchez-Montoya G, Bernardello G, Quesada M (2019). Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecology Letters, 22, 1163-1173.
[4] Albertoni FF, Steiner J, Zillikens A (2016). The associated beetle fauna of Hohenbergia augusta and Vriesea friburgensis (Bromeliaceae) in southern Brazil. Journal of Natural History, 50, 2917-2939.
[5] Almeida AM, Souza RM (2020). Nematode trophic structure in the phytotelma of Neoregelia cruenta (Bromeliaceae) in relation to microenvironmental and climate variables. Journal of Nematology, 52, e2020-100. DOI: 10.21307/jofnem-2020-100.
[6] Balke M, Gómez-Zurita J, Ribera I, Viloria A, Zillikens A, Steiner J, García M, Hendrich L, Vogler AP (2008). Ancient associations of aquatic beetles and tank bromeliads in the Neotropical forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 105, 6356-6361.
[7] Beaulieu F, Walter DE, Proctor HC, Kitching RL (2010). The canopy starts at 0.5 m: predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica, 42, 704-709.
[8] Benzing DH (1970). An investigation of two bromeliad myrmecophytes: Tillandsia butzii Mez, T. caput-medusae E. Morren, and their ants. Bulletin of the Torrey Botanical Club, 97, 109-115.
[9] Benzing DH (2008). Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press, New York.
[10] Benzing DH, Bennett B (2000). Bromeliaceae: Profile of an Adaptive Radiation. Cambridge University Press, New York.
[11] Bertness MD, Callaway R (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193.
[12] Blüthgen N, Feldhaar H (2009). Food and shelter: how resources influence ant ecology//Lach L, Parr C, Abbott K. Ant Ecology. Oxford University Press, Oxford.
[13] Blüthgen N, Schmit-Neuerburg V, Engwald S, Barthlott W (2001). Ants as epiphyte gardeners: comparing the nutrient quality of ant and termite canopy substrates in a Venezuelan lowland rain forest. Journal of Tropical Ecology, 17, 887-894.
[14] Brouard O, Céréghino R, Corbara B, Leroy C, Pelozuelo L, Dejean A, Carrias JF (2012). Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology, 57, 815-823.
[15] Cardoso CAA, Louren?o-de-Oliveira R, Code?o CT, Motta MA (2015). Mosquitoes in bromeliads at ground level of the Brazilian Atlantic forest: the relationship between mosquito fauna, water volume, and plant type. Annals of the Entomological Society of America, 108, 449-458.
[16] Cestari C (2009). Epiphyte plants use by birds in Brazil. Oecologia Australis, 13, 689-712.
[17] Chaves CJN, Rossatto DR (2020). Unravelling intricate interactions among atmospheric bromeliads with highly overlapping niches in seasonal systems. Plant Biology, 22, 243-251.
[18] Chomicki G, Renner SS (2019). Farming by ants remodels nutrient uptake in epiphytes. New Phytologist, 223, 2011-2023.
[19] Davidson DW, Epstein WW (1989). Epileptic associations with ants//Lüttge U. Vascular Plants as Epiphytes: Evolution and Ecophysiology. Springer, Berlin.
[20] Dejean A, Corbara B, Orivel J, Snelling RR, Delabie J, Belin-Depoux M (2000). The importance of ant gardens in the pioneer vegetal formations of French Guiana (Hymenoptera: Formicidae). Sociobiology, 35, 425-440.
[21] Donald J, Bonnett S, Cutler M, Majalap N, Maxfield P, Ellwood MDF (2017a). Physical conditions regulate the fungal to bacterial ratios of a tropical suspended soil. Forests, 8, 474. DOI: 10.3390/f8120474.
[22] Donald J, Clegg J, Ellwood MD (2017b). Colonisation of epiphytic ferns by skinks and geckos in the high canopy of a Bornean rainforest. Herpetological Bulletin, 141, 32-34.
[23] Donald J, Maxfield P, Leroy C, Ellwood MDF (2020). Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition. Acta Oecologica, 106, 103586. DOI: 10.1016/j.actao.2020.103586.
[24] Durán-Ramírez CA, Dias RJP, Mayén-Estrada R (2020). Checklist of ciliates (Alveolata: Ciliophora) that inhabit in bromeliads from the Neotropical Region. Zootaxa, 4895, zootaxa.4895.1.1. DOI: 10.11646/zootaxa.4895.1.1.
[25] Durán-Ramírez CA, García-Franco JG, Foissner W, Mayén- Estrada R (2015). Free-living ciliates from epiphytic tank bromeliads in Mexico. European Journal of Protistology, 51, 15-33.
[26] Ellis CJ, Ellis SC (2013). Signatures of autogenic epiphyte succession for an aspen chronosequence. Journal of Vegetation Science, 24, 688-701.
[27] Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, et al. (2005). Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3, 479-486.
[28] Ellwood MDF, Foster WA (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature, 429, 549-551.
[29] Fayle TM, Chung AYC, Dumbrell AJ, Eggleton P, Foster WA (2009). The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia. Biotropica, 41, 676-681.
[30] Fisher BL (1992). Facultative ant association benefits a Neotropical orchid. Journal of Tropical Ecology, 8, 109-114.
[31] Fisher BL, da Silveira Lobo Sternberg L, Price D (1990). Variation in the use of orchid extrafloral nectar by ants. Oecologia, 83, 263-266.
[32] Fisher BL, Zimmerman JK (1988). Ant/orchid associations in the Barro Colorado national monument, Panama. Lindleyana, 3, 12-16.
[33] Flores-Palacios A, Barbosa-Duchateau CL, Valencia-Díaz S, Capistrán-Barradas A, García-Franco JG (2014). Direct and indirect effects of Tillandsia recurvata on Prosopis laevigata in the Chihuahua Desert scrubland of San Luis Potosi, Mexico. Journal of Arid Environments, 104, 88-95.
[34] Flores-Palacios A, García-Franco JG (2008). Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodiversity and Conservation, 17, 191-207.
[35] Foissner W, Strüder-Kypke M, van der Staay GWM, Moon-van der Staay SY, Hackstein JHP (2003). Endemic ciliates (Protozoa, Ciliophora) from tank bromeliads (Bromeliaceae): a combined morphological, molecular, and ecological study. European Journal of Protistology, 39, 365-372.
[36] Fragoso C, Rojas-Fernández P (1996). Earthworms inhabiting bromeliads in Mexican tropical rainforests: ecological and historical determinants. Journal of Tropical Ecology, 12, 729-734.
[37] Frank JH, Sreenivasan S, Benshoff PJ, Deyrup MA, Edwards GB, Halbert SE, Hamon AB, Lowman MD, Mockford EL, Scheffrahn RH, Steck GJ, Thomas MC, Walker TJ, Welbourn WC (2004). Invertebrate animals extracted from native tillandsia (Bromeliales: Bromeliaceae) in Sarasota County, Florida. Florida Entomologist, 87, 176-185.
[38] Franken NAP, Roos MC (1982). The first record of Platycerium ridleyi in Sumatera. American Fern Journal, 72, 12-14.
[39] Freire RM, Montero GA, Vesprini JL, Barberis IM (2021). Review of the interactions of an ecological keystone species, Aechmea distichantha Lem. (Bromeliaceae), with the associated fauna. Journal of Natural History, 55, 283-303.
[40] Gamisch A, Winter K, Fischer GA, Comes HP (2021). Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae). New Phytologist, 231, 1236-1248.
[41] Gay H (1991). Ant-houses in the fern genus Lecanopteris Reinw. (Polypodiaceae): the rhizome morphology and architecture of L. sarcopus Teijsm. & Binnend. and L. darnaedii Hennipman. Botanical Journal of the Linnean Society, 106, 199-208.
[42] Gegenbauer C, Mayer VE, Zotz G, Richter A (2012). Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum. Annals of Botany, 110, 757-766.
[43] Gentry AH, Dodson CH (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74, 205-233.
[44] Giladi I (2006). Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112, 481-492.
[45] Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. The American Naturalist, 124, 479-497.
[46] Gon?alves AZ, Mercier H, Mazzafera P, Romero GQ (2011). Spider-fed bromeliads: seasonal and interspecific variation in plant performance. Annals of Botany, 107, 1047-1055.
[47] Helbsing S, Riederer M, Zotz G (2000). Cuticles of vascular epiphytes: efficient barriers for water loss after stomatal closure? Annals of Botany, 86, 765-769.
[48] Henle K, Knogge C (2009). Water-filled bromeliad as roost site of a tropical lizard, Urostrophus vautieri (Sauria: Leiosauridae). Studies on Neotropical Fauna and Environment, 44, 161-162.
[49] Hodgkison R, Balding ST, Akbar Z, Kunz TH (2003). Roosting ecology and social organization of the spotted-winged fruit bat, Balionycteris maculata (Chiroptera: Pteropodidae), in a Malaysian lowland dipterocarp forest. Journal of Tropical Ecology, 19, 667-676.
[50] Huang M, Wang D (2015). The role of elaiosome in seed dispersed herbaceous plants. Acta Ecologica Sinica, 35, 5721-5727.
[50] [黄曼, 王东 (2015). 油质体在5种蚁播植物种子散布中的作用. 生态学报, 35, 5721-5727.]
[51] Jian PY, Hu FS, Wang CP, Chiang JM, Lin TC (2013). Ecological facilitation between two epiphytes through drought mitigation in a subtropical rainforest. PLoS ONE, 8, e64599. DOI: 10.1371/journal.pone.0064599.
[52] Jowers MJ, Downie JR, Cohen BL (2008). The golden tree frog of Trinidad, Phyllodytes auratus (Anura: Hylidae): systematic and conservation status. Studies on Neotropical Fauna and Environment, 43, 181-188.
[53] Kapitany A (2008). Weird and wonderful ant-house plants. Cactus and Succulent Journal, 80, 276-287.
[54] Karasawa S, Hijii N (2006). Does the existence of bird’s nest ferns enhance the diversity of oribatid (Acari: Oribatida) communities in a subtropical forest? Biodiversity and Conservation, 15, 4533-4553.
[55] Kaufmann E (2002). Southeast Asian Ant Gardens: Diversity, Ecology, Ecosystematic Significance, and Evolution of Mutualistic Ant-Epiphyte Associations. PhD dissertation, CiteseerJohann Wolfgang Goethe University, Frankfurt am Main, Germany. 237.
[56] Kaufmann E, Maschwitz U (2006). Ant-gardens of tropical Asian rainforests. Naturwissenschaften, 93, 216-227.
[57] Larrea ML, Werner FA (2010). Response of vascular epiphyte diversity to different land-use intensities in a neotropical montane wet forest. Forest Ecology and Management, 260, 1950-1955.
[58] Laviski BFDS, Monteiro íDM, Pinho LC, Baptista RLC, Mayhé-Nunes AJ, Racca-Filho F, Nunes-Freitas AF (2021). Bromeliad habitat regulates the richness of associated terrestrial and aquatic fauna. Austral Ecology, 46, 860-870.
[59] Leroy C, Carrias JF, Céréghino R, Corbara B (2016). The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. Journal of Plant Ecology, 9, 241-255.
[60] Leroy C, Gril E, Ouali LS, Coste S, Gérard B, Maillard P, Mercier H, Stahl C (2019). Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads. Environmental and Experimental Botany, 163, 112-123.
[61] Li DC, Song XQ, Zhang Z, Chen ZH, Zhang ZY, Zhou K (2022). Strategies for conservation and priority monitoring of key orchid plants in Hainan Tropical Rainforest National Park. Journal of Tropical Biology, 13, 136-148.
[61] [李大程, 宋希强, 张哲, 陈枳衡, 张中扬, 周康 (2022). 海南热带雨林国家公园兰科植物重点保护与优先监测策略. 热带生物学报, 13, 136-148.]
[62] Liu WY, Ma WZ, Yang LP (2006). Advances in ecological studies on epiphytes in forest canopies. Journal of Plant Ecology (Chinese Version), 30, 522-533.
[62] [刘文耀, 马文章, 杨礼攀 (2006). 林冠附生植物生态学研究进展. 植物生态学报, 30, 522-533.]
[63] Lowman MD, Schowalter TD (2012). Plant science in forest canopies—The first 30 years of advances and challenges (1980-2010). New Phytologist, 194, 12-27.
[64] Mccracken SF, Forstner MRJ (2014). Herpetofaunal community of a high canopy tank bromeliad (Aechmea zebrina) in the Yasuní Biosphere Reserve of Amazonian Ecuador, with comments on the use of “arboreal” in the herpetological literature. Aechmea Zebrina, 8, 65-75.
[65] Mendieta-Leiva G, Porada P, Bader MY (2020). Interactions of epiphytes with precipitation partitioning//Van Stan II JT, Gutmann E, Friesen J. Precipitation Partitioning by Vegetation. Springer, Cham, Switzerland.
[66] Morales-Linares J, García-Franco JG, Flores-Palacios A, Valenzuela-González JE, Mata-Rosas M, Díaz-Castelazo C (2016). Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico. The Science of Nature, 103, 96. DOI: 10.1007/s00114-016-1421-9.
[67] Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006). Phylogeny of the ants: diversification in the age of angiosperms. Science, 312, 101-104.
[68] Moyano FV, Benitez-Ortiz W (2013). A new phytotelm plant, Crinum moorei (Asparagales: Amaryllidaceae), for the Americas and its mosquito inhabitant. Florida Entomologist, 96, 1224-1227.
[69] Nadkarni NM (1981). Canopy roots: convergent evolution in rainforest nutrient cycles. Science, 214, 1023-1024.
[70] Nadkarni NM (2000). Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica, 32, 358-363.
[71] Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma KP, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song L, et al. (2017). Forests and their canopies: achievements and horizons in canopy science. Trends in Ecology & Evolution, 32, 438-451.
[72] Nielsen WP (2011). Composición de Macroinvertebrados acuáticos en Bromelias (Catopsis spp.) de la Reserva Biológica Uyuca, Honduras. Master degree dissertation, Zamorano University, Tegucigalpa, Honduras. 26-28.
[73] Ochoa MG, Lavin MC, Ayala FC, Perez AJ (1993). Arthropods associated with Bromelia hemisphaerica (Bromeliales: Bromeliaceae) in Morelos, Mexico. Florida Entomologist, 76, 616-621.
[74] Orivel J, Leroy C (2011). The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae). Myrmecological News, 14, 73-85.
[75] Ortega-Solís G, Díaz I, Mellado-Mansilla D, Tello F, Moreno R, Tejo C (2017). Ecosystem engineering by Fascicularia bicolor in the canopy of the South-American temperate rainforest. Forest Ecology and Management, 400, 417-428.
[76] Ortega-Solis G, Díaz IA, Mellado-Mansilla D, Tejo C, Tello F, Craven D, Kreft H, Armesto JJ (2021). Trash-basket epiphytes as secondary foundation species: a review of their distribution and effects on biodiversity and ecosystem functions. bioRxiv, 2021-2026.
[77] Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Ko?rner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PLS, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301, 183-186.
[78] Phillips JW, Chung AYC, Edgecombe GD, Ellwood MDF (2020). Bird’s nest ferns promote resource sharing by centipedes. Biotropica, 52, 335-344.
[79] Pittl E, Innerebner G, Wanek W, Insam H (2010). Microbial communities of arboreal and ground soils in the Esquinas rainforest, Costa Rica. Plant and Soil, 329, 65-74.
[80] Rico-Gray V, Oliveira PS (2008). The Ecology and Evolution of Ant-plant Interactions. University of Chicago Press, Chicago.
[81] Rico-Gray V, Thien LB (1989). Effect of different ant species on reproductive fitness of Schomburgkia tibicinis (Orchidaceae). Oecologia, 81, 487-489.
[82] Rogy P, Hammill E, Srivastava DS (2019). Complex indirect effects of epiphytic bromeliads on the invertebrate food webs of their support tree. Biotropica, 51, 549-561.
[83] Romero GQ, Nomura F, Gon?alves AZ, Dias NYN, Mercier H, Conforto EDC, Rossa-Feres DDC (2010). Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach. Oecologia, 162, 941-949.
[84] Rowe DJ (2012). Some arboreal ant-house plants of Australasia and the southwest Pacific. Cactus and Succulent Journal, 84, 60-68.
[85] Ruano-Fajardo G, Rovito SM, Ladle RJ (2014) Bromeliad selection by two salamander species in a harsh environment. PLoS ONE, 9, e98474. DOI: 10.1371/journal.pone.0098474.
[86] Sabagh LT, Neutzling AS, Rocha CFD (2022). Phytophagous consumption by frogs inhabiting bromeliads from Atlantic Forest. Ethology Ecology & Evolution, 34, 165-179.
[87] Scheffers BR, Evans TA, Williams SE, Edwards DP (2014a) Microhabitats in the tropics buffer temperature in a globally coherent manner. Biology Letters, 10, 20140819. DOI: 10.1098/rsbl.2014.0819.
[88] Scheffers BR, Phillips BL, Shoo LP (2014b). Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs. Global Ecology and Conservation, 2, 37-46.
[89] Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245-269.
[90] Schmit-Neuerburg V, Blüthgen N (2007). Ant-garden epiphytes are protected against drought in a Venezuelan lowland rain forest. Ecotropica, 13, 93-100.
[91] Spicer ME, Mellor H, Carson WP (2020). Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology, 101, e02974. DOI: 10.1002/ecy.2974.
[92] Spicer ME, Woods CL (2022). A case for studying biotic interactions in epiphyte ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics, 54, 125658. DOI: 10.1016/j.ppees.2021.125658.
[93] Stuntz S, Ziegler C, Simon U, Zotz G (2002). Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 18, 161-176.
[94] Taylor A, Burns K (2015). Plant composition patterns inside an endemic birds’ nest fern (Asplenium goudeyi) on Lord Howe Island: effects of fern size, fern isolation and plant dispersal abilities. Journal of Tropical Ecology, 31, 413-421.
[95] Taylor A, Zotz G, Weigelt P, Cai LR, Karger DN, K?nig C, Kreft H (2022). Vascular epiphytes contribute disproportionately to global centres of plant diversity. Global Ecology and Biogeography, 31, 62-74.
[96] Thiago G, Antonio DB, Denise DCR, Gustavo QR (2010). Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest. The Journal of Arachnology, 38, 270-279.
[97] Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Gribben PE, Lear G, He Q, Schiel DR, Silliman BR, South PM, Watson DM, Wernberg T, Zotz G (2018). Secondary foundation species enhance biodiversity. Nature Ecology & Evolution, 2, 634-639.
[98] Torreias SRD, Ferreira-Keppler RL, Godoy BS, Hamada N (2010). Mosquitoes (Diptera, Culicidae) inhabiting foliar tanks of Guzmania brasiliensis Ule (Bromeliaceae) in central Amazonia, Brazil. Revista Brasileira de Entomologia, 54, 618-623.
[99] Treseder KK, Davidson DW, Ehleringer JR (1995). Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature, 375, 137-139.
[100] Turner E, Foster WA (2006). Assessing the influence of bird’s nest ferns (Asplenium spp.) on the local microclimate across a range of habitat disturbances in Sabah, Malaysia. Selbyana, 27, 195-200.
[101] Ule E (1901). Ameiseng?rten im Amazonasgebiet. Pflanzengeschichte und Pflanzengeographien, 68, 45-52.
[102] Volp TM, Lach L (2019). An epiphytic ant-plant mutualism structures arboreal ant communities. Environmental Entomology, 48, 1056-1062.
[103] Wang L, Zhang JT, Li ZB, Zhang Y (2020). Research advances in mutualistic relationship between ants and plants. Journal of Southwest Forestry University (Natural Sciences), 40(1), 181-188.
[103] [王亮, 张锦堂, 李宗波, 张媛 (2020). 蚂蚁与植物的互惠共生关系研究进展. 西南林业大学学报(自然科学), 40(1), 181-188.]
[104] Wang YC, Deng ZY, Zhang SX, Xiao CC, Feng G, Long WX, Liu JS (2022). Host tree selection by vascular epiphytes in tropical cloud forest of Hainan Island, China. Chinese Journal of Plant Ecology, 46, 405-415.
[104] [王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史 (2022). 海南热带云雾林附生维管植物对宿主的选择性. 植物生态学报, 46, 405-415.]
[105] Woods CL (2017). Primary ecological succession in vascular epiphytes: the species accumulation model. Biotropica, 49, 452-460.
[106] Woods CL, Cardelús CL, DeWalt SJ (2015). Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. Journal of Ecology, 103, 421-430.
[107] Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM (2016). Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522.
[107] [吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 (2016). 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.]
[108] Xu ST (2013). Epiphytic Characteristics of Asplenium nidus L. (Aspleniaceae) Complex in Tropical Montane Rain Forest, Hainan Island. PhD dissertation, Hainan University, Haikou.
[108] [徐诗涛 (2013). 海南热带山地沟谷雨林鸟巢蕨附生特性研究. 博士学位论文, 海南大学, 海口.]
[109] Youngsteadt E, Baca JA, Osborne J, Schal C (2009). Species- specific seed dispersal in an obligate ant-plant mutualism. PLoS ONE, 4, e4335. DOI: 10.1371/journal.pone.0004335.
[110] Yu DW (1994). The structural role of epiphytes in ant gardens. Biotropica, 26, 222-226.
[111] Zhang S, Zhang YX, Ma KM (2010). A review of protective ant-plant interaction and its mediation mechanism. Chinese Journal of Plant Ecology, 34, 1344-1353.
[111] [张霜, 张育新, 马克明 (2010). 保护性的蚂蚁-植物相互作用及其调节机制研究综述. 植物生态学报, 34, 1344-1353.]
[112] Zona S, Christenhusz MJM (2015). Litter-trapping plants: filter-feeders of the plant kingdom. Botanical Journal of the Linnean Society, 179, 554-586.
[113] Zotz G (2016). Epiphytes and humans//Zotz G. Plants on Plants-The Biology of Vascular Epiphytes. Springer, Cham, Switzerland.
[114] Zotz G, Bader MY (2009). Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes//Lüttge U, Beyschlag W, Büdel B, Francis D. Progress in Botany. Springer, Berlin.
[115] Zotz G, Leja M, Aguilar-Cruz Y, Einzmann HJR (2020). How much water is in the tank? An allometric analysis with 205 bromeliad species. Flora, 264, 151557. DOI: 10.1016/j.flora.2020.151557.
[116] Zotz G, Weigelt P, Kessler M, Kreft H, Taylor A (2021). EpiList 1.0: a global checklist of vascular epiphytes. Ecology, 102, e03326. DOI: 10.1002/ecy.3326.
Outlines

/

[an error occurred while processing this directive]