植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 575-582.DOI: 10.17521/cjpe.2019.0313
所属专题: 全球变化与生态系统
• 综述 • 上一篇
收稿日期:
2019-11-14
接受日期:
2020-01-05
出版日期:
2020-05-20
发布日期:
2020-03-26
通讯作者:
史大林
基金资助:
Received:
2019-11-14
Accepted:
2020-01-05
Online:
2020-05-20
Published:
2020-03-26
Contact:
SHI Da-Lin
Supported by:
摘要:
工业革命以来, 不断加剧的人类活动所引起的大气CO2浓度增加、温度上升等全球变化问题, 正使得海洋生态系统面临着前所未有的压力。该文通过文献计量的方法分析了国内外的研究现状, 简要地回顾了全球变化对海洋生态系统影响研究的发展简史, 并聚焦海洋暖化、海洋酸化和富营养化与缺氧这三个核心研究方向, 重点阐述了它们对海洋生态系统初级生产的关键过程的影响, 总结了已取得的重要进展以及存在的主要问题, 最后提出前沿展望。
叶幼亭, 史大林. 全球变化对海洋生态系统初级生产关键过程的影响. 植物生态学报, 2020, 44(5): 575-582. DOI: 10.17521/cjpe.2019.0313
YE You-Ting, SHI Da-Lin. Effects of global change on key processes of primary production in marine ecosystems. Chinese Journal of Plant Ecology, 2020, 44(5): 575-582. DOI: 10.17521/cjpe.2019.0313
图1 1981-2018年发表的与“全球变化对海洋生态系统的影响”相关的SCI论文数。查询数据库: Web of Science; 查询关键词: TI = ((climate AND change) AND (marine OR ocean OR coast OR sea OR estuary))或TI = ((global AND warming) AND (marine OR ocean OR coast OR sea OR estuary))或TI = ((ocean AND acidification) AND (marine OR ocean OR coast OR sea OR estuary))或TI = ((eutrophication AND hypoxia) AND (marine OR ocean OR coast OR sea OR estuary))。
Fig. 1 Number of SCI papers published between 1981 and 2018 related to “the impacts of global change on marine ecosystems”. Database: Web of Science; Key words: TI = ((climate AND change) AND (marine OR ocean OR coast OR sea OR estuary)) or TI = ((global AND warming) AND (marine OR ocean OR coast OR sea OR estuary)) or TI = ((ocean AND acidification) AND (marine OR ocean OR coast OR sea OR estuary)) or TI = ((eutrophication AND hypoxia) AND (marine OR ocean OR coast OR sea OR estuary)).
图2 1981-2018年与“全球变化对海洋生态系统的影响”相关的SCI论文发表量前10国家。
Fig. 2 Top 10 countries for SCI papers published between 1981 and 2018 related to “the impacts of global change on marine ecosystems”.
图3 1981-2018年发表的与“全球变暖、海洋酸化和富营养化对海洋生态系统的影响”相关的SCI论文数。A, 国际发展态势。B, 中国发展态势。查询数据库: Web of Science; 查询关键词: TI = (climate AND warming) AND (marine OR ocean OR coast OR sea OR estuary), 或TI = (global AND warming) AND (marine OR ocean OR coast OR sea OR estuary); TI = (ocean AND acidification) AND (marine OR ocean OR coast OR sea OR estuary); TI = Eutrophication* AND (marine OR ocean OR coast OR sea OR estuary), 或TI = Hypoxia* AND (marine OR ocean OR coast OR sea OR estuary)) , 或TI = Deoxygenation* AND (marine OR ocean OR coast OR sea OR estuary)。
Fig. 3 Number of SCI papers published between 1981 and 2018 related to “the impacts of ocean warming, ocean acidification and eutrophication and hypoxia on marine ecosystems”. A, Development trend of internation. B, Development trend of China. Database: Web of Science; Key wards: TI = (climate AND warming) AND (marine OR ocean OR coast OR sea OR estuary), or TI = (global AND warming) AND (marine OR ocean OR coast OR sea OR estuary); TI = (ocean AND acidification) AND (marine OR ocean OR coast OR sea OR estuary); TI = Eutrophication* AND (marine OR ocean OR coast OR sea OR estuary), or TI = Hypoxia* AND (marine OR ocean OR coast OR sea OR estuary)) , or TI = Deoxygenation* AND (marine OR ocean OR coast OR sea OR estuary).
图4 1981-2018年与“全球变暖、海洋酸化和富营养化对海洋生态系统的影响”相关的SCI论文发量前10国家。
Fig. 4 Top 10 countries for SCI papers published between 1981 and 2018 related to “the impacts of ocean warming, ocean acidification and eutrophication and hypoxia on marine ecosystems”.
[1] | Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998). The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast- based CO2-concentrating mechanisms in algae. Canadian Journal of Botany, 76, 1052-1071. |
[2] | Bates NR (2001). Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. Deep Sea Research, 48, 1507-1528. |
[3] | Bianchi TS, DiMarco SF, Cowan Jr JH, Hetland RD, Chapman P, Day JW, Allison MA (2010). The science of hypoxia in the Northern Gulf of Mexico: a review. Science of the Total Environment, 408, 1471-1484. |
[4] | Breitburg DL, Hondorp DW, Davias LA, Diaz RJ (2009). Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Annual Review of Marine Science, 1, 329-349. |
[5] | Brewer PG (1978). Direct observation of the oceanic CO2 increase. Geophysical Research Letters, 5, 997-1000. |
[6] | Broecker WS, Takahashi T (1966). Calcium carbonate precipitation on the Bahama Banks. Journal of Geophysical Research, 71, 1575-1602. |
[7] | Bruno JF, Stachowicz JJ, Bertness MD (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119-125. |
[8] | Caldeira K, Wickett ME (2003). Anthropogenic carbon and ocean pH. Nature, 425, 365. DOI: 10.1038/425365a. |
[9] | Cao L, Caldeira K (2008). Atmospheric CO2 stabilization and ocean acidification. Geophysical Research Letters, 35, L19609. DOI: 10.1029/2008GL035072. |
[10] | Cloern JE (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223-253. |
[11] | Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA, Paerl HW, Yoshinari T (2001). The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Scientia Marina, 65, 85-105. |
[12] |
Diaz RJ, Rosenberg R (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929.
URL PMID |
[13] | Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science, 1, 169-192. |
[14] | Donner SD (2009). Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLOS ONE, 4, e5712. DOI: 10.1371/journal.pone.0005712. |
[15] | Eppley R (1972). Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70, 1063-1085. |
[16] |
Flynn KJ, Clark DR, Mitra A, Fabian H, Hansen PJ, Glibert PM, Wheeler GL, Stoecker DK, Blackford JC, Brownlee C (2015). Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Proceedings of the Royal Society B, 282, 20142604. DOI: 10.1098/rspb.2014.2604.
URL PMID |
[17] | Gruber N (2004). The Ocean Carbon Cycle and Climate. Kluwer Academic Publishers, Dordrecht, Netherlands. |
[18] | Hallegraeff GM (2010). Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology, 46, 220-235. |
[19] |
Hoegh-Guldberg O, Bruno JF (2010). The impact of climate change on the world’s marine ecosystems. Science, 328, 1523-1528.
URL PMID |
[20] | Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737-1742. |
[21] | Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010). The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annual Review of Ecology, Evolution, and Systematics, 41, 127-147. |
[22] |
Hong H, Shen R, Zhang F, Wen Z, Chang S, Lin W, Kranz SA, Luo YW, Kao SJ, Morel FMM, Shi D (2017). The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science, 356, 527-531.
DOI URL PMID |
[23] | Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto Jr TM, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012). The geological record of ocean acidification. Science, 335, 1058-1063. |
[24] | Hutchins DA, Boyd PW (2016). Marine phytoplankton and the changing ocean iron cycle. Nature Climate Change, 6, 1072-1079. |
[25] | Hyrenbach KD, Veit RR (2003). Ocean warming and seabird communities of the southern California Current System (1987-98): response at multiple temporal scales. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 2537-2565. |
[26] | Ishimatsu A, Kikkawa T, Hayashi M, Lee KS, Kita J (2004). Effects of CO2 on marine fish: larvae and adults. Journal of Oceanography, 60, 731-741. |
[27] | Jin X, Gruber N (2003). Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophysical Research Letters, 30, 2249. DOI: 10.1029/2003gl018458. |
[28] | Keeling RE, Körtzinger A, Gruber N (2010). Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2, 199-229. |
[29] |
Kleynhans EJ, Otto SP, Reich PB, Vellend M (2016). Adaptation to elevated CO2 in different biodiversity contexts. Nature Communications, 7, 12358. DOI: 10.1038/ncomms12358.
DOI URL PMID |
[30] |
Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology, 19, 1884-1896.
DOI URL PMID |
[31] | Mackey KRM, Morris JJ, Morel FMM, Kranz SA (2015). Response of photosynthesis to ocean acidification. Oceanography, 28, 74-91. |
[32] | Mayor DJ, Everett NR, Cook KB (2012). End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod. Journal of Plankton Research, 34, 258-262. |
[33] | McQuaid JB, Kustka AB, Oborník M, Horák A, McCrow JP, Karas BJ, Zheng H, Kindeberg T, Andersson AJ, Barbeau KA, Allen AE (2018). Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature, 555, 534-537. |
[34] | Moore B, Roaf HE, Whitley E (1906). On the effects of alkalies and acids, and of alkaline and acid salts, upon growth and cell division in the fertilized eggs of Echinus esculentus —A study in relationship to the causation of malignant disease. Proceedings of the Royal Society B, 77, 102-136. |
[35] |
Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000). Effect of aquaculture on world fish supplies. Nature, 405, 1017-1024.
URL PMID |
[36] |
Neumann T, Eilola K, Gustafsson B, Müller-Karulis B, Kuznetsov I, Meier HEM, Savchuk OP (2012). Extremes of temperature, oxygen and blooms in the Baltic Sea in a changing climate. Ambio, 41, 574-585.
URL PMID |
[37] | Nevison C, Butler JH, Elkins JW (2003). Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean. Global Biogeochemical Cycles, 17, 1119. DOI: 10.1029/2003GB002068. |
[38] | Pörtner HO (2008). Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecology Progress Series, 373, 203-217. |
[39] |
Pörtner HO, Knust R (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95-97.
DOI URL PMID |
[40] | Pörtner HO, Langenbuch M (2005). Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from earth history to global change. Journal of Geophysical Research, 110, C09S10. DOI: 10.1029/ 2004JC002561. |
[41] | Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010). Dynamics and distribution of natural and human- caused hypoxia. Biogeosciences, 7, 585-619. |
[42] | Reinfelder JR (2011). Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science, 3, 291-315. |
[43] | Revelle R, Suess HE (1957). Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9, 18-27. |
[44] | Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007). Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450, 545-548. |
[45] | Riebesell U, Wolf-Gladrow DA, Smetacek V (1993). Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361, 249-251. |
[46] | Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000). Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364-367. |
[47] | Rosenthal H (1985). Constraints and perspectives in aquaculture development. Marine Pollution Bulletin, 16, 227-231. |
[48] | Ross PM, Parker L, O’Connor WA, Bailey EA (2011). The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water, 3, 1005-1030. |
[49] | Rubey WW (1951). Geologic history of sea water: an attempt to state the problem. Bulletin of the Geological Society of America, 62, 1111-1148. |
[50] | Sen Gupta BK, Turner RE, Rabalais NN (1996). Seasonal oxygen depletion in the continental-shelf waters of Louisiana: historical record of benthic foraminifers. Geology, 24, 227-230. |
[51] | Shi D, Li W, Hopkinson BM, Hong H, Li D, Kao SJ, Lin W (2015). Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana. Limnology and Oceanography, 60, 1805-1822. |
[52] | Shi D, Xu Y, Hopkinson BM, Morel FMM (2010). Effect of ocean acidification on iron availability to marine phytoplankton. Science, 327, 676-679. |
[53] | Spivack AJ, You CF, Smith HJ (1993). Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature, 363, 149-151. |
[54] | Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010). Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences, 7, 979-1005. |
[55] | Suggett DJ, Dong LF, Lawson T, Lawrenz E, Torres L, Smith DJ (2013). Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs, 32, 327-337. |
[56] | Turner RE, Rabalais NN (2017). 2017 Forecast: summer hypoxic zone size Northern Gulf of Mexico. http://www.healthygulf.org/sites/healthygulf.org/files/final_lsu_lumcon_ 2017_hypoxia_forecast.pdf. cited: 2019-11-14 |
[57] |
Wang X, Cheng H, Che H, Sun J, Lu H, Qiang M, Hua T, Zhu B, Li H, Ma W, Lang L, Jiao L, Li D (2017). Modern dust aerosol availability in northwestern China. Scientific Reports, 7, 8741. DOI: 10.1038/s41598-017-09458-w.
DOI URL PMID |
[58] | Weart SR (2003). The Discovery of Global Warming. Harvard University Press, Cambridge, USA. |
[59] | Xiao W, Wang L, Laws E, Xie Y, Chen J, Liu X, Chen B, Huang B (2018). Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea. Progress in Oceanography, 162, 223-239. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19