植物生态学报 ›› 2003, Vol. 27 ›› Issue (5): 661-666.DOI: 10.17521/cjpe.2003.0096

• 论文 • 上一篇    下一篇

濒危植物秦岭冷杉种子萌发特性的研究

赖江山, 李庆梅, 谢宗强   

  • 发布日期:2003-05-10
  • 通讯作者: 赖江山

Seed Germinating Characteristics of the Endangered Plant Abies chensiensis

LAI Jiang-Shan, Li Qing-Mei, XIE Zong-Qiang   

  • Published:2003-05-10
  • Contact: YANG Xiao-Jie and SUN Zhi-Lin

摘要:

秦岭冷杉(Abies chensiensis)为中国特有种,主要分布于中国秦巴山地,现为渐危种,被列为国家二级保护植物。经测定,秦岭冷杉种子千粒重为(33.92±1.01)g,与其它冷杉属的种子比较,其种子千粒重较大。四唑(TTC,1.0 %)染色测种子生活力的结果表明:有生活力的种子占26.00%,空粒占20.50%,涩粒占33.75%,说明秦岭冷杉种子饱满度很差,反映了比较高的种子败育率;染色结果与对比发芽实验的结果很接近,说明用四唑染色来测定秦岭冷杉种子的生活力是较准确的方法。把种子进行0、14、21、28d低温(4℃)层积处理,发现低温层积可以显著提高种子发芽率和发芽势,但是层积21d与28d发芽势没有差异。设置恒温20℃、25℃和变温20~30℃ 3种温度条件下发芽比较,发现最终的发芽率并没有差异,但是发芽势差异显著,恒温25℃达到最大发芽率的90%的时间要比另外两种温度下提前9d,可见25℃是秦岭冷杉种子发芽的适宜温度。光照(8 h·d-1,100μmol·m-2·s-1)和黑暗下种子的最后发芽率差异不显著,但是光照发芽势高,可见光照可以促进秦岭冷杉种子发芽迅速、整齐。实验证明,用砂床做发芽基质与用纸床做发芽基质相比,前者的发芽率和发芽势均比后者高。

Abstract:

Abies chensiensis, an endangered plant mainly distributed in Qinling Mountains and Dabashan Mountains, was listed as one of national protected plants at second category in China. There have been no reports about the study of seed germinating characteristics of A. chensiensis until now. The objectives of this study were to 1) identify whether cold stratification was effective for breaking the dormancy of A. chensiensis seeds and find out the optimum duration of cold stratification; 2) determine the optimal temperature for germination and whether alternating temperatures affected germination; 3) test whether germination was affected by light; 4) choose the better germination texture between silver sand and filter paper.The 1 000-seed weight of A. chensiensis was (33.92±1.01) g, which was higher than other fir seeds. The viability of seedlot was tested by TTC (1.0 %). The results of seed dissection, reflecting the high seed abortion, showed that the percentages of viable seeds, empty seeds and shrunken seeds were 26.00%, 20.50% and 33.75%, respectively. Germination tests were performed to determine the effects of cold stratification (4 ℃ for 0, 14, 21 and 28 days), temperatures (two constant temperatures 20 ℃, 25 ℃ and an alternating 20-30 ℃), light (in light of 8 h·d-1, 100μmol·m-2·s-1 and in darkness) and germination textures (filter paper and silver sand) on germination rate. The results showed that cold stratification could increase seed germination percentage and germination energy; the longer the duration of cold stratification, the higher the germination rate; but the percentages of germination energy did not increase if the duration was longer than 21 days. 25 ℃ was not better for the seed germination percentage, but was better for germination energy than the other two temperature regimes, because a 9-day treatment showed 90% of the biggest germination percentage in 25 ℃; and the alternating 20-30 ℃ did not increase the germination percentages of the seeds of A. chensiensis. Compared with those in darkness, light (8 h·d-1, 100μmol·m-2·s-1) did not increase germination percentages, although it did increase germination energy; light was not indispensable for germination of A. chensiensis seeds, but did accelerate the process of germination. Great differences were found for germination percentage and germination energy in two germination textures; the percentages of germination and germination energy on silver sand were 19.75% and 16.75% respectively, but 8.00% and 6.00% on filter paper. The result showed that the silver sand was a better germination texture for A. chensiensis seeds than filter paper, perhaps because silver sand could offer more sufficient water for the germination of bigger seeds such as A. chensiensis than filter paper.