不同海拔高度下百山祖冷杉幼苗的生长特征及其影响因素
收稿日期: 2024-06-12
录用日期: 2024-11-12
网络出版日期: 2024-11-14
基金资助
浙江省“尖兵” “领雁”研发攻关计划(2023C03137)
Growth characteristics of Abies beshanzuensis seedlings at different altitudes and the influencing factors
Received date: 2024-06-12
Accepted date: 2024-11-12
Online published: 2024-11-14
Supported by
Zhejiang Province “Vanguard” and “Leading Goose” R&D Breakthrough Program(2023C03137)
百山祖冷杉(Abies beshanzuensis)是国家一级重点保护野生植物, 目前仅存3株母树, 分布于浙江省庆元县百山祖西南坡海拔1 750 m左右的常绿落叶阔叶混交林中。为深入了解不同海拔高度下环境因子变化对百山祖冷杉幼苗生长的影响, 在庆元县山区设置11个不同海拔高度(500-1 500 m)实验点, 对移植的百山祖冷杉幼苗进行生长监测, 并结合土壤和空气温湿度、土壤微生物和土壤理化性质等环境因子的变化, 探究百山祖冷杉幼苗生长对海拔高度变化的响应机制。研究结果表明: (1) 海拔过低(500 m)导致百山祖冷杉幼苗存活率下降50%。幼苗的高度、冠宽、基径和其对应的增长率随海拔的升高先上升后下降, 在海拔700-1 100 m区域生长最佳。(2)真菌Simpson多样性指数增加对幼苗基径增长率有显著正向作用。(3)幼苗生长与空气和土壤温度存在显著的正相关关系, 而与空气和土壤湿度存在显著的负相关关系。土壤和空气温度在11-19 ℃范围内升高以及土壤和空气湿度在10%-25%范围降低能够促进幼苗生长。(4)土壤营养元素如铵态氮含量和碳氮比对幼苗高度、基径和冠宽的增长率具有显著正向作用。总之, 海拔、真菌多样性、土壤和空气温湿度以及土壤营养元素是影响百山祖冷杉幼苗生长的关键环境因子, 今后进行迁地保护时可重点考虑。
李欣怡 , 张丽芳 , 吴友贵 , 郭静 , 兰荣光 , 吕洪飞 , 于明坚 . 不同海拔高度下百山祖冷杉幼苗的生长特征及其影响因素[J]. 植物生态学报, 2025 , 49(4) : 610 -623 . DOI: 10.17521/cjpe.2024.0194
Aims Abies beshanzuensis is a first-class protected wild plant in China, with only three individuals remaining in mixed evergreen-deciduous broadleaf forest at approximately 1 750 m above sea level on the southwest slope of Baishanzu, Qingyuan County, Zhejiang Province. This study aims to gain a comprehensive understanding of the impact of environmental factors on the growth of A. beshanzuensis seedlings at different altitudes.
Methods we established 11 experimental sites at varying altitudes (ranging from 500 to 1 500 m) in the Qingyuan mountain region to monitor the growth of transplanted A. beshanzuensis seedlings. By examining changes in environmental factors such as air temperature and humidity, soil microorganisms, and soil physicochemical properties, we investigated how A. beshanzuensis seedlings responded to altitude change.
Important findings The results showed that: (1) the survival rate of A. beshanzuensis seedlings decreased by 50% due to the low altitude (500 m). The height, crown width, base diameter and their corresponding growth rates of seedlings increased first and then decreased with the increasing altitude; and the seedlings grew best at altitudes ranging from 700-1 100 m. (2) An increase in fungal Simpson diversity index had a significant positive effect on the growth rate of seedling base diameter. (3) The growth of seedlings showed a significant positive correlation with air and soil temperature, and a significant negative correlation with air and soil moisture. Specifically, an increase in air and soil temperature within the range of 11-19 °C and a decrease in air and soil humidity within the range of 10%-25% promoted seedling growth. (4) The soil nutrients, such as ammonium nitrogen content, as well as soil carbon-to-nitrogen ratio, had significant positive effects on the growth rates of seedling height, base diameter and crown width. In conclusion, altitude, fungal diversity, soil and air temperature, humidity, and soil nutrients are key environmental factors influencing the growth of A. beshanzuensis seedlings, and should be considered as critical factors in their ex situ conservation.
[1] | Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003). Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology, 23, 33-41. |
[2] | Chandanie WA, Kubota M, Hyakumachi M (2005). Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience, 46, 201-204. |
[3] | Chen YK, Yang XB, Yang Q, Li DH, Long WX, Luo WQ (2014). Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. PLoS ONE, 9, e97751. DOI: 10.1371/journal.pone.0097751. |
[4] | Cheng QB, Wu MX, Chen HT (1996). Comprehensive observations report on Fengyangshan-Baishanzu Nature Reserve of Zhejiang. Journal of Zhejiang Forestry Science and Technology, 16(6), 1-7. |
[程秋波, 吴鸣翔, 陈豪庭 (1996). 浙江凤阳山-百山祖自然保护区综合考察报告. 浙江林业科技, 16(6), 1-7.] | |
[5] | Ding XN, Shi T, Yang LF, Yang H, Wang KX, Guo XF, Shi GA (2019). Correlation between seed quality and meteorological factors of oil tree peony Fengdan at different altitudes. Journal of Henan Agricultural Sciences, 48(11), 120-126. |
[丁熙柠, 史田, 杨林菲, 杨辉, 王凯轩, 郭香凤, 史国安 (2019). 不同海拔高度油用牡丹凤丹籽粒品质与气象因子的相关性研究. 河南农业科学, 48(11), 120-126.] | |
[6] | Gan YT, Stobbe EH, Njue C (1996). Evaluation of selected nonlinear regression models in quantifying seedling emergence rate of spring wheat. Crop Science, 36, 165-168. |
[7] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[8] | Herbert DA, Williams M, Rastetter EB (2003). A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150. |
[9] | H?gberg P, N?sholm T, Franklin O, H?gberg MN (2017). Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161-185. |
[10] | Huang J, Mo JM (2016). The effect of simulated nitrogen deposition on the emission of carbonyl compounds from Ormosia pinnata and Cinnamomum burmannii. Expert Opinion on Environmental Biology, s1, 2016. DOI: 10.4172/2325-9655.S1-004. |
[11] | Huang YX, Xu X, Zhang LX, Song Y, Luo ZR (2016). Ten-years period of grass and small woody plant dynamics in a 5-ha evergreen forest plot in Baishanzu, Zhejiang Province. Biodiversity Science, 24, 1353-1363. |
[黄云霞, 徐萱, 张莉芗, 宋玥, 骆争荣 (2016). 百山祖常绿阔叶林灌草层物种组成和分布的10年动态. 生物多样性, 24, 1353-1363.] | |
[12] | International Union for Conservation of Nature and Natural Resources (IUCN) (1987). The most endangered twelve animals and twelve plants. Species: Newsletter of the SSC, 8, 21-24. |
[13] | International Union for Conservation of Nature and Natural Resources (IUCN)(2021). The IUCN Red List of Threatened Species 2021. [2024-6-11]. https://www.iucnredlist.org/species/32318/150298372. |
[14] | Jiang Y, Zhuang QL, Liang WJ (2007). Soil organic carbon pool and its affecting factors in farmland ecosystem. Chinese Journal of Ecology, 26, 278-285. |
[姜勇, 庄秋丽, 梁文举 (2007). 农田生态系统土壤有机碳库及其影响因子. 生态学杂志, 26, 278-285.] | |
[15] | Li JX, Kong FC (2000). Introduction and cultivation of Primula vialii. Yunnan Agricultural Science and Technology, (3), 28-29. |
[李景秀, 孔繁才 (2000). 高穗报春的引种栽培. 云南农业科技, (3), 28-29.] | |
[16] | Li XX, Tao C, Wang QC, Cui GF (2012). Characteristics of geographic distribution of four critically endangered species of Abies in subtropical China and its relationship with climate. Chinese Journal of Plant Ecology, 36, 1154-1164. |
[李晓笑, 陶翠, 王清春, 崔国发 (2012). 中国亚热带地区4种极危冷杉属植物的地理分布特征及其与气候的关系. 植物生态学报, 36, 1154-1164.] | |
[17] | Lin X (1999). The world’s most endangered plant—Abies beshanzuensis. Man and the Biosphere, (3), 48. |
[林协 (1999). 世界最濒危植物——百山祖冷杉. 中国生物圈保护区, (3), 48.] | |
[18] | Liu BY, Tang H, Wang ML, Liang HL, Wen XY, Deng CH (2021). Seed germination and seedling growth and development characteristics of Illicicum difengpi, an endemic plant of karst region. Seed, 40(1), 63-68. |
[刘宝玉, 唐辉, 王满莲, 梁惠凌, 文香英, 邓成华 (2021). 喀斯特特有植物地枫皮种子萌发及幼苗生长发育特性研究. 种子, 40(1), 63-68.] | |
[19] | Liu C, Tian T, Li S, Wang F, Liang Y (2018). Growth response of Chinese woody plant seedlings to different light intensities. Acta Ecologica Sinica, 38, 518-527. |
[刘从, 田甜, 李珊, 王芳, 梁宇 (2018). 中国木本植物幼苗生长对光照强度的响应. 生态学报, 38, 518-527.] | |
[20] | Liu M, Li ZP, Zhang TL, Jiang CY, Che YP (2011). Discrepancy in response of rice yield and soil fertility to long-term chemical fertilization and organic amendments in paddy soils cultivated from infertile upland in subtropical China. Agricultural Sciences in China, 10, 259-266. |
[21] | Liu YH, Zhou RZ, Zeng QW (1997). Ex situ conservation of Magnoliaceae including its rare and endangered species. Journal of Tropical and Subtropical Botany, 5(2), 1-12. |
[刘玉壶, 周仁章, 曾庆文 (1997). 木兰科植物及其珍稀濒危种类的迁地保护. 热带亚热带植物学报, 5(2), 1-12.] | |
[22] | Ma JP, Pang DB, Chen L, Wan HY, Chen GL, Li XB (2022). Characteristics of soil microbial community structure under vegetation at different altitudes in Helan Mountains. Acta Ecologica Sinica, 42, 667-676. |
[马进鹏, 庞丹波, 陈林, 万红云, 陈高路, 李学斌 (2022). 贺兰山不同海拔植被下土壤微生物群落结构特征. 生态学报, 42, 667-676.] | |
[23] | Maeda SI, Konishi M, Yanagisawa S, Omata T (2014). Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant & Cell Physiology, 55, 1311-1324. |
[24] | National Forestry and Grassland Administration, Ministry of Agriculture and Rural Affairs (2021). List of National Key Protected Wild Plants.[2024-6-11]. https://www.forestry.gov.cn/c/www/lczc/10746.jhtml. |
[ 国家林业和草原局, 农业农村部 (2021). 国家重点保护野生植物名录.[2024-6-11]. https://www.forestry.gov.cn/c/www/lczc/10746.jhtml. | |
[25] | Newton LA, Runkle ES (2009). High-temperature inhibition of flowering of Phalaenopsis and doritaenopsis orchids. HortScience, 44, 1271-1276. |
[26] | Pan HL, Li MH, Cai XH, Wu J, Du Z, Liu XL (2009). Responses of growth and ecophsiology of plants to altitude. Ecology and Environmental Sciences, 18, 722-730. |
[潘红丽, 李迈和, 蔡小虎, 吴杰, 杜忠, 刘兴良 (2009). 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 18, 722-730.] | |
[27] | Pang Z (2023). Physiological Response and Transcriptome Analysis of Abies beshanzunesis M. H. Wu Seedlings to Different Altitudes and High Temperature Stress. Master degree dissertation, Zhejiang Sci-Tech University, Hangzhou. |
[庞振 (2023). 百山祖冷杉苗木对不同海拔高度和高温胁迫的生理响应及转录组分析. 硕士学位论文, 浙江理工大学, 杭州.] | |
[28] | Qiu ZW, Jiang HE, Ding LL, Shang X (2020). Late Pleistocene-Holocene vegetation history and anthropogenic activities deduced from pollen spectra and archaeological data at Guxu Lake, Eastern China. Scientific Reports, 10, 9306. DOI: 10.1038/s41598-020-65834-z. |
[29] | Russell MB, Weiskittel AR (2011). Maximum and largest crown width equations for 15 tree species in Maine. Northern Journal of Applied Forestry, 28, 84-91. |
[30] | Shao YZ, Zhang XC, Phan LK, Xiang QP (2017). Elevation shift in Abies Mill. (Pinaceae) of subtropical and temperate China and Vietnam-corroborative evidence from cytoplasmic DNA and ecological niche modeling. Frontiers in Plant Science, 8, 578. DOI: 10.3389/fpls.2017.00578. |
[31] | Song C, Zeng FJ, Liu B, Zhang LG, Luo WC, Peng SL, Stefan KA (2012). Influence of water condition on morphological characteristics and biomass of Calligonum caput-medusae Schrenk seedlings. Chinese Journal of Ecology, 31, 2225-2233. |
[宋聪, 曾凡江, 刘波, 张利刚, 罗维成, 彭守兰, Stefan KA (2012). 不同水分条件对头状沙拐枣幼苗形态特征及生物量的影响. 生态学杂志, 31, 2225-2233.] | |
[32] | Sui YY, Zhang XY, Jiao XG, Wang QC, Zhao J (2005). Effect of long-term different fertilizer applications on organic matter and nitrogen of black farmland. Journal of Soil Water Conservation, 19(6), 192-194. |
[隋跃宇, 张兴义, 焦晓光, 王其存, 赵军 (2005). 长期不同施肥制度对农田黑土有机质和氮素的影响. 水土保持学报, 19(6), 192-194.] | |
[33] | Tang H, Li TT, Shen CH, Hu YY, Wu JS (2014). Effects of nitrogen forms on foliar photosynthesis, nutrient status and nitrogen metabolism of Torreya grandis seedlings. Scientia Silvae Sinicae, 50(10), 158-163. |
[唐辉, 李婷婷, 沈朝华, 胡渊渊, 吴家胜 (2014). 氮素形态对香榧苗期光合作用、主要元素吸收及氮代谢的影响. 林业科学, 50(10), 158-163.] | |
[34] | Tao S, Hua XY, Wang YN, Guo N, Yan XF, Lin JX (2017). Research advance in effects of different nitrogen forms on growth and physiology of plants. Guizhou Agricultural Sciences, 45(12), 64-68. |
[陶爽, 华晓雨, 王英男, 郭娜, 阎秀峰, 蔺吉祥 (2017). 不同氮素形态对植物生长与生理影响的研究进展. 贵州农业科学, 45(12), 64-68.] | |
[35] | van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423. |
[36] | Wang GH, Jin J, Xu MN, Liu XB (2006). Effects of plant, soil and soil management on soil microbial community diversity. Chinese Journal of Ecology, 25, 550-556. |
[王光华, 金剑, 徐美娜, 刘晓冰 (2006). 植物、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 25, 550-556.] | |
[37] | Wu MX (1976). Abies beshanzuensis M. H. Wu—A new species of Abies from Chekiang. Journal of Systematics and Evolution, 14(2), 15-21. |
[吴鸣翔 (1976). 百山祖冷杉——一种新的冷杉的发现. 植物分类学报, 14(2), 15-21.] | |
[38] | Wu YG (2019). Save critically endangered plants and protect Abies beshanzuensis in all aspects. Zhejiang Forestry, (9), 36-37. |
[吴友贵 (2019). 拯救极度濒危植物——全方位保护百山祖冷杉. 浙江林业, (9), 36-37.] | |
[39] | Wu YG, Rao LB, Chen DL, Zhou RF, Ye ZL (2010). Artificial seedling-raising of Abies beshanzuensis seed. Journal of Anhui Agricultural Sciences, 38, 12038-12039. |
[吴友贵, 饶龙兵, 陈德良, 周荣飞, 叶珍林 (2010). 百山祖冷杉种子的人工育苗试验. 安徽农业科学, 38, 12038-12039.] | |
[40] | Wu YG, Zhu ZC, Wu QQ, Cai HM, Chen DY (2023). The seed rain of critically endangered plant Abies beshanzuensis. Bulletin of Botanical Research, 43, 711-719. |
[吴友贵, 朱志成, 吴倩倩, 蔡焕满, 陈定云 (2023). 极危植物百山祖冷杉的种子雨. 植物研究, 43, 711-719.] | |
[41] | Xiang QP (2001). A preliminary survey on the distribution of rare and endangered plants of Abies in China. Guihaia, 21(2), 113-117. |
[向巧萍 (2001). 中国的几种珍稀濒危冷杉属植物及其地理分布成因的探讨. 广西植物, 21(2), 113-117.] | |
[42] | Xiang XG, Cao M, Zhou ZK (2006). Fossil history and modern distribution of the genus Abies (Pinaceae). Acta Botanica Yunnanica, 28, 439-452. |
[向小果, 曹明, 周浙昆 (2006). 松科冷杉属植物的化石历史和现代分布. 云南植物研究, 28, 439-452.] | |
[43] | Xing Y, Ma XH (2015). Research progress on effect of nitrogen form on plant growth. Journal of Agricultural Science and Technology, 17(2), 109-117. |
[邢瑶, 马兴华 (2015). 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 17(2), 109-117.] | |
[44] | Zhu YG, Miller RM (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 8, 407-409. |
/
〈 |
|
〉 |