研究论文

云南香格里拉亚高山寒温性针叶林优势种空间分布格局及种内种间关联性

  • 万嘉敏 ,
  • 张彩彩 ,
  • 邓云 ,
  • 顾荣 ,
  • 斯那取宗 ,
  • 吴俊华 ,
  • 娄启妍 ,
  • 陈梅 ,
  • 张志明 ,
  • 林露湘
展开
  • 1大理大学东喜玛拉雅研究院, 云南大理 671003
    2中国科学院西双版纳热带植物园热带森林生态学重点实验室, 云南勐腊 666303
    3云南西双版纳森林生态系统国家野外科学观测研究站, 云南勐腊 666303
    4香格里拉普达措国家公园管理局, 云南迪庆 674499
    5云南大学生态与环境学院西南跨境生态安全教育部重点实验室, 昆明 650091

收稿日期: 2024-03-09

  录用日期: 2024-06-20

  网络出版日期: 2024-12-18

基金资助

中央财政林草生态保护恢复资金(WNLY-2022-06-018);国家自然科学基金-云南联合基金(U1902203);国家自然科学基金(32160268);云南省基础研究专项(202101BC070002);云南省重点研发计划(202303AC100009)

Spatial distribution patterns and intraspecific and interspecific associations of dominant species in subalpine cold-temperate coniferous forests of Shangri-La, Yunnan, China

  • WAN Jia-Min ,
  • ZHANG Cai-Cai ,
  • DENG Yun ,
  • GU Rong ,
  • SINA Qu-Zong ,
  • WU Jun-Hua ,
  • LOU Qi-Yan ,
  • CHEN Mei ,
  • ZHANG Zhi-Ming ,
  • LIN Lu-Xiang
Expand
  • 1Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan 671003, China
    2CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
    3National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan 666303, China
    4Potatso National Park Authority in Shangri-La, Dêqên, Yunnan 674499, China
    5Key Laboratory for Transboundary Ecosecurity of Southwest China of Ministry of Education, School of Ecology and Environmental Sciencé, Yunnan University, Kunming 650091, China

Received date: 2024-03-09

  Accepted date: 2024-06-20

  Online published: 2024-12-18

Supported by

Central Government Finance for Forest and Grassland Ecological Protection and Restoration(WNLY-2022-06-018);Joint Fund of the National Natural Science Foundation of China-Yunnan Province(U1902203);National Natural Science Foundation of China(32160268);Basic Research Special Project of Yunnan Province(202101BC070002);Key Research and Development Plan of Yunnan Province(202303AC100009)

摘要

植物种群空间分布格局是散布限制和环境过滤等多种生态过程综合作用的结果。分布在高山树线交错带的植物因其特殊的生境, 对气候变化表现出高度的敏感性。因此, 研究这些植物的空间分布格局及其相互关系, 对理解和预测高山林线森林群落的动态和发展趋势至关重要。该研究基于云南香格里拉亚高山寒温性针叶林20 hm2动态监测样地的调查数据, 以样地内优势种长苞冷杉(Abies georgei)、亚乔木层优势种红棕杜鹃(Rhododendron rubiginosum)和西南花楸(Sorbus rehderiana)、灌木层优势种唐古特忍冬(Lonicera tangutica)和云南双盾木(Dipelta yunnanensis)为研究对象, 采用空间点格局方法分析各优势种的空间分布格局、长苞冷杉不同发育阶段间的种内关联性、长苞冷杉与其他优势种间的种间关联性, 以及其他优势种种间关联性, 并使用Torus-translation方法检验这些植物与地形因子的关联性。结果表明: (1)长苞冷杉的幼树和中树均呈现聚集分布, 这主要由散布限制和生境异质性驱动; 而成树主要呈随机分布, 表明密度依赖性的竞争对大径级个体分布的主导作用。亚乔木层和灌木层的优势种均呈聚集分布, 但剔除环境异质性后部分优势种转变为随机分布, 说明环境过滤驱动了树种空间分布模式。(2)长苞冷杉的幼树与中树呈正关联, 可能是小径级个体通过集群作用来提高抵御外界环境胁迫的能力。幼树和中树与成树呈负关联, 这主要受由密度制约引起的专一性病原菌和植食性昆虫的侵害以及大个体对小个体的不对称竞争的影响。(3)长苞冷杉的幼树与亚乔木层和灌木层的优势种分别呈正关联和负关联; 中树与其他优势种大多表现为负关联, 而成树则多表现为正关联; 乔木层和灌木层优势种之间多表现为正关联。说明亚高山寒温性针叶林优势种之间存在复杂的动态平衡。各优势种通过独特的生存策略和资源利用方式来实现长期共存, 最终形成以长苞冷杉为主导的相对稳定的顶极群落。(4)坡度与长苞冷杉的幼树和中树的密度显著负相关, 与红棕杜鹃和云南双盾木显著正相关, 说明长苞冷杉与其他优势种发生了坡度生态位的分化。此外, 由于冬季积雪时间较长等不利因素, 凹凸度也对优势种的分布具有显著的影响。总体而言, 地形驱动的生境过滤可能是维持亚高山寒温性针叶林群落构建的主要驱动力。

本文引用格式

万嘉敏 , 张彩彩 , 邓云 , 顾荣 , 斯那取宗 , 吴俊华 , 娄启妍 , 陈梅 , 张志明 , 林露湘 . 云南香格里拉亚高山寒温性针叶林优势种空间分布格局及种内种间关联性[J]. 植物生态学报, 2025 , 49(2) : 268 -281 . DOI: 10.17521/cjpe.2024.0066

Abstract

Aims The spatial distribution patterns of plant populations result from the combined effects of multiple ecological processes, such as dispersal limitation and environmental filtering. The plants distributed in alpine treeline ecotones are highly sensitive to climate change due to their unique habitats. Therefore, studying the spatial distribution patterns of these plants and their correlations is critical for understanding and predicting the dynamics and trends of forest communities in alpine treelines.

Methods This study is based on the inventory data collected from a 20 hm2dynamics plot of a subalpine cold-temperate coniferous forest in Shangri-La, Yunnan, China. The dominant tree species identified were Abies georgei, Lonicera tangutica, Dipelta yunnanensis, Rhododendron rubiginosum, and Sorbus rehderiana. The spatial point pattern method was used to analyze the spatial distribution pattern of each dominant species, the intraspecific association of A. georgei at different developmental stages, the interspecific association between A. georgei and the other dominant species, and the interspecific association among the other dominant species. Additionally, the Torus-translation method was applied to test the associations between these plants and topographic factors.

Important findings (1) Sapling and juvenile trees of A. georgei demonstrated aggregated distributions, primarily driven by dispersal limitation and habitat heterogeneity. In contrast, adult trees exhibited a predominantly random distribution, suggesting that density-dependent competition may be the primary factor influencing the distribution of individuals in large-diameter classes. The dominant species in both the subtree layer and shrub layer also demonstrated aggregated distribution. However, the posterior partial advantage of the environmental heterogeneity transformed into a random distribution, indicating that environmental filtering might be responsible for driving the spatial distribution pattern of these tree species. (2) Positive associations were observed between sapling and juvenile trees of A. georgei indicating that small-diameter individuals tend to congregate due to an enhanced capacity to cope with external environmental stresses. Conversely, saplings and juvenile trees were negatively correlated with adult trees. This was mainly due to the infestation of specific pathogens and phytophagous insects caused by density constraints and asymmetric competition of large individuals against smaller ones. (3) There were positive and negative correlations between the saplings and the dominant species in the subtree layer and the shrub layer, respectively. The juvenile trees and other dominant species revealed predominantly negative correlation, while the adult trees showed predominantly positive correlation. The majority of the dominant species in the tree layer and shrub layer exhibited positive correlation, indicating a complex dynamic balance within the dominant species in the subalpine cold-temperate coniferous forest. The long-term coexistence of each dominant species in the plot is achieved through their unique survival strategies and resource utilization, and ultimately leading to the formation of a relatively stable successional climax community dominated by A. georgei. (4) Slope was found to be significantly negatively correlated with sapling and juvenile trees of A. georgei, and significantly positively related to R. rubiginosum and D. yunnanensis. This suggests that the slope ecological niche differentiation occurred between A. georgei and other dominant species. Additionally, convexity was found to exert a significant effect on the distribution of dominant species due to adverse conditions such as prolonged snowpack in winter. In conclusion, the habitat filtering driven by topography is the main driver that maintains community assembly in subalpine cold-temperate coniferous forests.

参考文献

[1] Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou C, Troch PA, Huxman TE (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 106, 7063-7066.
[2] An L, Wu ZF, Fan CY, Zhang CY, Zhao XH (2021). Spatial point patterns and effects of density dependence in secondary poplar-birch forest, Changbai Mountains, China. Acta Ecologica Sinica, 41, 1461-1471.
  [安璐, 吴兆飞, 范春雨, 张春雨, 赵秀海 (2021). 长白山次生杨桦林种群空间点格局及密度制约效应. 生态学报, 41, 1461-1471.]
[3] Balvanera P, Quijas S, Pérez-Jiménez A (2011). Distribution patterns of tropical dry forest trees along a mesoscale water availability gradient. Biotropica, 43, 414-422.
[4] Barros C, Guéguen M, Douzet R, Carboni M, Boulangeat I, Zimmermann NE, Münkemüller T, Thuiller W (2017). Extreme climate events counteract the effects of climate and land-use changes in Alpine treelines. Journal of Applied Ecology, 54, 39-50.
[5] Brown C, Law R, Illian JB, Burslem DFRP (2011). Linking ecological processes with spatial and non-spatial patterns in plant communities. Journal of Ecology, 99, 1402-1414.
[6] Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Sch?b C, Xiao S, Anthelme F, Bj?rk RG, Dickinson KJM, Cranston BH, Gavilán R, et al. (2014). Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 17, 193-202.
[7] Chacón-Labella J, de la Cruz M, Escudero A (2017). Evidence for a stochastic geometry of biodiversity: the effects of species abundance, richness and intraspecific clustering. Journal of Ecology, 105, 382-390.
[8] Chen Y, Kou WL, Ma XG, Wei XY, Gong MJ, Yin X, Li JT, Li JQ (2022). Estimation of the value of forest ecosystem services in Pudacuo National Park, China. Sustainability, 14, 10550. DOI: 10.3390/su141710550.
[9] Chuyong GB, Kenfack D, Harms KE, Thomas DW, Condit R, Comita LS (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212, 1363-1374.
[10] Condit R (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin.
[11] Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
[12] Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Populations, 86, 298-312.
[13] Dong X, Du X, Sun ZH, Gu HY, Chen XW (2020). Spatial pattern and intraspecific association of natural Korean pine population under the influence of habitat gradient. Acta Ecologica Sinica, 40, 5239-5246.
  [董雪, 杜昕, 孙志虎, 谷会岩, 陈祥伟 (2020). 生境梯度影响下的天然红松种群空间格局与种内关联. 生态学报, 40, 5239-5246.]
[14] Frost I, Rydin H (2000). Spatial pattern and size distribution of the animal-dispersed tree Quercus robur in two spruce- dominated forests. écoscience, 7, 38-44.
[15] Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015). Boreal forest health and global change. Science, 349, 819-822.
[16] Getzin S, Wiegand T, Wiegand K, He F (2008). Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 96, 807-820.
[17] Gibbons JM, Newbery DM (2003). Drought avoidance and the effect of local topography on trees in the understorey of Bornean lowland rain forest. Plant Ecology, 164, 1-18.
[18] Gu R, Zhang CC, He ZH, Yang R, Chen Y, Feng P, Sina QZ, Zhao DL, Yixi YC, Wu JH, Lin LX (2021). Population spatial distribution pattern and association of Abies georgei in Shangri-La Potatso National Park. Chinese Journal of Ecology, 40, 3860-3869.
  [顾荣, 张彩彩, 和正华, 杨荣, 陈瑶, 冯萍, 斯那取宗, 赵冬莲, 益西央初, 吴俊华, 林露湘 (2021). 香格里拉普达措国家公园长苞冷杉种群空间分布格局及关联性. 生态学杂志, 40, 3860-3869.]
[19] Gu R, Wan JM, Chen MM, Zhang CC, Lin LX (2025). Woody plant composition and habitat association of the 20 hm2 dynamics plot of subalpine cold-temperate coniferous forest in Shangri-La, Yunnan. Chinese Journal of Ecology, 44, in press.
  [顾荣, 万嘉敏, 陈明苗, 张彩彩, 林露湘 (2025). 云南香格里拉亚高山寒温性针叶林20 hm2动态监测样地物种组成与生境关联. 生态学杂志, 44, 出版中.]
[20] Han H, Luo M, Li T, Wei XL (2021). Natural population characteristics, spatial distribution pattern and spatial correlation analysis of Phoebe bournei in Guizhou Province. Acta Ecologica Sinica, 41, 5360-5367.
  [韩豪, 骆漫, 李涛, 韦小丽 (2021). 贵州闽楠天然种群特征、空间分布格局及空间关联分析. 生态学报, 41, 5360-5367.]
[21] Han L, Wang HZ, Peng J, Mo ZX (2007). Spatial distribution patterns and dynamics of major population in Populus euphratica forest in upper reaches of Tarim River. Acta Botanica Boreali-Occidentalia Sinica, 27, 1668-1673.
  [韩路, 王海珍, 彭杰, 莫治新 (2007). 塔里木河上游天然胡杨林种群空间分布格局与动态研究. 西北植物学报, 27, 1668-1673.]
[22] Harms KE, Condit R, Hubbell SP, Foster RB (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959.
[23] He CM, Jia SH, Luo Y, Hao ZQ, Yin QL (2022). Spatial distribution and species association of dominant tree species in Huangguan plot of Qinling Mountains, China. Forests, 13, 866. DOI: 10.3390/f13060866.
[24] Hermes K (1955). Die Lage der Oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Selbstverlag des Geographischen Instituts der Universita?t Ko?ln, Ko?ln, Germany.
[25] HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248.
[26] K?rner C, Paulsen J (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
[27] Lan GY, Hu YH, Cao M, Zhu H, Wang H, Zhou SS, Deng XB, Cui JY, Huang JG, Liu LY, Xu HL, Song JP, He YC (2008). Establishment of Xishuangbanna tropical forest dynamics plot: species compositions and spatial distribution patterns. Journal of Plant Ecology (Chinese Version), 32, 287-298.
  [兰国玉, 胡跃华, 曹敏, 朱华, 王洪, 周仕顺, 邓晓保, 崔景云, 黄建国, 刘林云, 许海龙, 宋军平, 何有才 (2008). 西双版纳热带森林动态监测样地-树种组成与空间分布格局. 植物生态学报, 32, 287-298.]
[28] Lee JY, Marotzke J, Bala G, Cao L, Corti S, Dunne JP, Engelbrecht F, Fischer E, Fyfe JC, Jones C, Maycock A, Mutemi J, Niaye O, Panickal S, Zhou T, Christensen HM (2021). Future global climate: scenario-based projections and near-term information//IPCC. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the IPCC Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[29] Li L, Chen JH, Ren HB, Mi XC, Yu MJ, Yang B (2010). Spatial patterns of Castanopsis eyrei and Schima superba in mid-subtropical broad-leaved evergreen forest in Gutianshan National Reserve, China. Chinese Journal of Plant Ecology, 34, 241-252.
  [李立, 陈建华, 任海保, 米湘成, 于明坚, 杨波 (2010). 古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析. 植物生态学报, 34, 241-252.]
[30] Liang S, Xu H, Lin JY, Li YD, Lin MX (2014). Spatial distribution pattern of the dominant species Gironniera subaequalis in tropical montane rainforest of Jianfengling, Hainan Island, China. Chinese Journal of Plant Ecology, 38, 1273-1282.
  [梁爽, 许涵, 林家怡, 李意德, 林明献 (2014). 尖峰岭热带山地雨林优势树种白颜树空间分布格局. 植物生态学报, 38, 1273-1282.]
[31] Lin G, Stralberg D, Gong G, Huang Z, Ye W, Wu L (2013). Separating the effects of environment and space on tree species distribution: from population to community. PLoS ONE, 8, e56171. DOI: 10.1371/journal.pone.0056171.
[32] Liu PC, Wang WD, Bai ZQ, Guo ZJ, Ren W, Huang JH, Xu Y, Yao J, Ding Y, Zang RG (2020). Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China. Forest Ecology and Management, 467, 118167. DOI: 10.1016/j.foreco.2020.118167.
[33] Liu Q (2004). The effects of gap size and within gap position on the survival and growth of naturally regenerated Abies georgei seedlings. Acta Phytoecologica Sinica, 28, 204-209.
  [刘庆 (2004). 林窗对长苞冷杉自然更新幼苗存活和生长的影响. 植物生态学报, 28, 204-209.]
[34] Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Sci-Tech R & D, 23, 63-69.
  [刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23, 63-69.]
[35] Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX (2012). Experimental evidence for a phylogenetic Janzen- Connell effect in a subtropical forest. Ecology Letters, 15, 111-118.
[36] Loosmore NB, Ford ED (2006). Statistical inference using the G or K point pattern spatial statistics. Ecology, 87, 1925-1931.
[37] Mao ZK, Hao ZQ, Yuan ZQ, Lin F, Ye J, Kuang X, Wang XG (2020). Abundance-asymmetry in conspecific aggregation and interspecific interaction. Scientia Sinica (Vitae), 50, 381-390.
  [毛子昆, 郝占庆, 原作强, 蔺菲, 叶吉, 匡旭, 王绪高 (2020). 物种聚集分布与种间关系的多度不对称性. 中国科学: 生命科学, 50, 381-390.]
[38] Nathan R (2006). Long-distance dispersal of plants. Science, 313, 786-788.
[39] Palmer MW (1990). Spatial scale and patterns of species- environment relationships in hardwood forest of the North Carolina piedmont. Coenoses, 5, 79-87.
[40] Punchi-Manage R, Getzin S, Wiegand T, Kanagaraj R, Savitri Gunatilleke CV, Nimal Gunatilleke IAU, Wiegand K, Huth A (2013). Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. Journal of Ecology, 101, 149-160.
[41] Qiu J, Han AX, He CM, Yin QL, Jia SH, Luo Y, Li CL, Hao ZQ (2022). Spatial distribution pattern and intraspecific association of dominant species Quercus aliena var. acutiserrata in Qinling Mountains, China. Chinese Journal of Applied Ecology, 33, 2035-2042.
  [邱婧, 韩安霞, 何春梅, 尹秋龙, 贾仕宏, 罗颖, 李晨璐, 郝占庆 (2022). 秦岭优势乔木锐齿槲栎的空间分布格局及种内关联. 应用生态学报, 33, 2035-2042.]
[42] Ripley BD (1977). Modelling spatial patterns. Journal of the Royal Statistical Society Series B: Statistical Methodology, 39, 172-192.
[43] Shen G, He F, Waagepetersen R, Sun I, Hao Z, Chen Z, Yu M (2013). Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. Ecology, 94, 2436-2443.
[44] Sterner RW, Ribic CA, Schatz GE (1986). Testing for life historical changes in spatial patterns of four tropical tree species. Journal of Ecology, 74, 621-633.
[45] Stoll P, Bergius E (2005). Pattern and process: competition causes regular spacing of individuals within plant populations. Journal of Ecology, 93, 395-403.
[46] Sun Y, Fu T, Jin J, Murphy RW, Hillis DM, Zhang Y, Che J (2018). Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proceedings of the National Academy of Sciences of the United States of America, 115, E10634-E10641.
[47] Wang D, Zhang ZS, Zeng QY, Han XM (2023). Fruiting and seed characteristics of Abies in northwest Yunnan. Bulletin of Botanical Research, 43, 647-656.
  [王丹, 张中帅, 曾庆银, 韩学敏 (2023). 滇西北冷杉属植物结实特性及种子特征研究. 植物研究, 43, 647-656.]
[48] Wang XG, Ye J, Li BH, Zhang J, Lin F, Hao ZQ (2010). Spatial distributions of species in an old-growth temperate forest, northeastern China. Canadian Journal of Forest Research, 40, 1011-1019.
[49] Webb CO, Peart DR (2000). Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88, 464-478.
[50] Wiegand T, Moloney KA (2004). Rings, circles, and null- models for point pattern analysis in ecology. Oikos, 104, 209-229.
[51] Wiegand T, Moloney KA (2014). Handbook of Spatial Point- pattern Analysis in Ecology. CRC Press, Boca Raton, USA.
[52] Xing HS, Feng QH, Shi ZM, Liu S, Xu GX, Chen J, Gong SS (2024). Response of leaf traits to altitude in Quercus aquifolioides and Sorbus rehderiana on the eastern edge of the Qinghai-Tibet Plateau, China. Chinese Journal of Applied Ecology, 35, 606-614.
  [邢红爽, 冯秋红, 史作民, 刘顺, 许格希, 陈健, 巩闪闪 (2024). 青藏高原东缘川滇高山栎和西南花楸叶片性状对海拔的响应. 应用生态学报, 35, 606-614.]
[53] Xing HS, Shi ZM, Liu S, Chen M, Xu GX, Cao XW, Zhang MM, Chen J, Li FF (2023). Leaf traits divergence and correlations of woody plants among the three plant functional types on the eastern Qinghai-Tibetan Plateau, China. Frontiers in Plant Science, 14, 1128227. DOI: 10.3389/fpls.2023.1128227.
[54] Yang XQ, Yan HB, Li BH, Han YZ, Song B (2018). Spatial distribution patterns of Symplocos congeners in a subtropical evergreen broad-leaf forest of Southern China. Journal of Forestry Research, 29, 773-784.
[55] Yang YH, Duan ZF, Weng M, Fang ZY, Sinan PC, Long ZB (2021). Characteristics and trend of climate change in Pudacuo National Park in recent years. Journal of Agricultural Catastrophology, 11(12), 33-34.
  [杨迎花, 段志方, 翁姆, 方志芸, 斯楠培初, 龙志彬 (2021). 普达措国家公园近几年气候变化特征及趋势分析. 农业灾害研究, 11(12), 33-34.]
[56] Ye QP, Zhang WH, Yu SC, Xue WY (2018). Interspecific association of the main tree populations of the Quercus acutissima community in the Qiaoshan forest area. Acta Ecologica Sinica, 38, 3165-3174.
  [叶权平, 张文辉, 于世川, 薛文艳 (2018). 桥山林区麻栎群落主要乔木种群的种间联结性. 生态学报, 38, 3165-3174.]
[57] Zhang H, Fu PL, Lin YX, Ge S, Yang JQ, Gerong QZ, Fan ZX (2022). Intra-annual radial growth of Abies georgei and Larix potaninii and its responses to environmental factors in the Baima Snow Mountain, Northwest Yunnan, China. Chinese Journal of Applied Ecology, 33, 2881-2888.
  [张慧, 付培立, 林友兴, 格桑, 杨建强, 格茸取扎, 范泽鑫 (2022). 滇西北白马雪山长苞冷杉和大果红杉年内径向生长动态及其对环境因子的响应. 应用生态学报, 33, 2881-2888.]
[58] Zhang JM, Fan ZX, Fu PL, Shankar P, Tang H (2021). Radial growth responses of four coniferous species to climate change in the Potatso National Park, China. Chinese Journal of Applied Ecology, 32, 3548-3556.
  [张菊梅, 范泽鑫, 付培立, Shankar P, 唐华 (2021). 普达措国家公园四种针叶树径向生长对气候因子的响应. 应用生态学报, 32, 3548-3556.]
[59] Zhang JT (1998). Analysis of spatial point pattern for plant species. Acta Phytoecologica Sinica, 22, 344-349.
  [张金屯(1998). 植物种群空间分布的点格局分析. 植物生态学报, 22, 344-349.]
[60] Zhang QY, Luo P, Zhang YC, Shi FS, Yi SL, Wu N (2008). Ecological characteristics of Abies georgei population at timberline on the north-facing slope of Baima Snow Mountain, Southwest China. Acta Ecologica Sinica, 28, 129-135.
  [张桥英, 罗鹏, 张运春, 石福孙, 易绍良, 吴宁 (2008). 白马雪山阴坡林线长苞冷杉(Abies georgei)种群结构特征. 生态学报, 28, 129-135.]
[61] Zhang Y, Yin DC, Zhang WG, Yue HT, Du JCD, Li QP, Yang R, Tian K (2018). Response of radial growth of two conifers to temperature and precipitation in Potatso National Park, Southwest China. Acta Ecologica Sinica, 38, 5383-5392.
  [张贇, 尹定财, 张卫国, 岳海涛, 杜杰次丹, 李秋平, 杨荣, 田昆 (2018). 普达措国家公园2个针叶树种径向生长对温度和降水的响应. 生态学报, 38, 5383-5392.]
[62] Zhao CM, Chen QH, Qiao YK, Pan KW (2004). Structure and spatial pattern of a natural Abies faxoniana population on the eastern edge of Qinghai-Tibetan Plateau. Acta Phytoecologica Sinica, 28, 341-350.
  [赵常明, 陈庆恒, 乔永康, 潘开文 (2004). 青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局. 植物生态学报, 28, 341-350.]
[63] Zhao GD, Xiong K, Xu GX, Ma FQ, Yang HG, Liu S, Shi ZM, Chen J, Zhang Y (2022). Spatial patterns and associations of main dominant species Abies fargesii var. faxoniana and Betula utilis in Miyaluo subalpine dark coniferous forest of western Sichuan, China. Acta Ecologica Sinica, 42, 3377-3388.
  [赵广东, 熊凯, 许格希, 马凡强, 杨洪国, 刘顺, 史作民, 陈健, 张运 (2022). 川西米亚罗亚高山暗针叶林岷江冷杉和糙皮桦空间格局及其关联性分析. 生态学报, 42, 3377-3388.]
[64] Zhao YT (2023). Evaluation and analysis of forest ecosystem services value in Pudacuo National Park. Forest Inventory and Planning, 48, 208-213.
  [赵玉堂 (2023). 普达措国家公园森林生态系统服务价值评估与分析. 林业调查规划, 48, 208-213.]
[65] Zhu WT, Liu HK, He R, Yu DY, Xia Y, Dang HS (2022). Spatial point pattern analysis and spatio-temporal dynamics of Abies georgei var. smithii forests in southeast Tibet. Acta Ecologica Sinica, 42, 8977-8984.
  [朱文婷, 刘海坤, 何睿, 于东悦, 夏鹰, 党海山 (2022). 藏东南急尖长苞冷杉群落空间点格局分析及其时空动态. 生态学报, 42, 8977-8984.]
[66] Zhu WT, Xie FL, Li T, He NJ, Zhang KR, Zhang QF, Dang HS (2021). Species-habitat association of a deciduous broadleaved forest in the subtropical and temperate transition zone. Chinese Journal of Applied Ecology, 32, 2755-2762.
  [朱文婷, 谢峰淋, 李涛, 何念军, 张克荣, 张全发, 党海山 (2021). 亚热带-温带气候过渡区落叶阔叶林物种-生境关联分析. 应用生态学报, 32, 2755-2762.]
[67] Zhu Y, Bai F, Liu HF, Li WC, Li L, Li GQ, Wang SZ, Sang WG (2011). Population distribution patterns and interspecific spatial associations in warm temperate secondary forests, Beijing. Biodiversity Science, 19, 252-259.
  [祝燕, 白帆, 刘海丰, 李文超, 李亮, 李广起, 王顺忠, 桑卫国 (2011). 北京暖温带次生林种群分布格局与种间空间关联性. 生物多样性, 19, 252-259.]
[68] Zhu Y, Mi XC, Ma KP (2009). A mechanism of plant species coexistence: the negative density-dependent hypothesis. Biodiversity Science, 17, 594-604.
  [祝燕, 米湘成, 马克平 (2009). 植物群落物种共存机制: 负密度制约假说. 生物多样性, 17, 594-604.]
文章导航

/