鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析
# 共同第一作者
网络出版日期: 2015-10-24
基金资助
楚天学者计划项目及湖北省重点(特色)学科(2013XKJS_10517)和湖北省教育厅重点项目(D20122901)
Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China
# Co-first authors
Online published: 2015-10-24
为深入研究亚热带常绿落叶阔叶混交林的生物多样性维持机制, 合理保护与利用此类森林植被, 以鄂西南两个自然保护区——星斗山和木林子典型的亚热带常绿落叶阔叶混交林为研究对象, 在野外样方调查的基础上进行了群落数量分类和排序, 分析了常绿和落叶物种比例随群落类型及环境因子变化的规律。研究结果表明: (1)将鄂西南两个自然保护区的亚热带常绿落叶阔叶混交林划分为5个群落类型: 即青冈-翅柃+尖连蕊茶(Cyclobalanopsis glauca-Eurya alata + Camellia cuspidata)群落(I)、川陕鹅耳枥+青冈-翅柃(Carpinus fargesiana + Cyclobalanopsis glauca-Eurya alata)群落(II)、川陕鹅耳枥+青冈-水马桑(Carpinus fargesiana + Cyclobalanopsis glauca-Weigela japonica)群落(III)、光叶水青冈+多脉青冈-翅柃(Fagus lucida + Cyclobalanopsis multinervis-Eurya alata)群落(IV)和川陕鹅耳枥+交让木+包果柯-翅柃(Carpinus fargesiana + Daphniphyllum macropodum + Lithocarpus cleistocarpus-Eurya alata)群落(V); (2)常绿和落叶物种的丰富度、多度、胸高断面积及重要值等指标随群落类型而变化。在群落II、III和V中落叶物种占优势, 而在群落I和IV中二者无显著差异; (3)各类型群落在小径级(1-5 cm)内落叶物种的丰富度大于常绿物种, 但多度、胸高断面积和重要值大都小于常绿物种。在中径级(5-10 cm)内, 群落I和群落IV的各项指标都表现为常绿物种大于落叶物种, 而群落II、群落III和群落V的则相反。在大径级(≥ 10 cm)内, 各群落类型的落叶物种都占显著优势, 其各项指标大于常绿物种; (4)海拔、坡度、坡向、土壤氮含量和土壤磷含量是影响各群落类型内常绿和落叶物种比例变化的主导因子。
黄永涛, 姚兰, 艾训儒, 吕世安, 丁易 . 鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析[J]. 植物生态学报, 2015 , 39(10) : 990 -1002 . DOI: 10.17521/cjpe.2015.0096
The subtropical evergreen-deciduous broadleaved mixed forest is the largest extant natural vegetation type in southwest Hubei. However, little knowledge exists on the types and compositions (especially the relative ratios of evergreen versus deciduous species) of this forest vegetation. Here, we quantitatively classify the less studied forest vegetation into different community types, compare their size and composition structure, and analyze species-environment relationships which is the basis for further understanding the biodiversity maintenance mechanism and reasonable protection and utilization of this forest.
We established 92 20 m × 20 m plots of subtropical evergreen-deciduous broadleaved mixed forest in two national nature reserves in Enshi, Hubei Province, China. All species with stems ≥1 cm diameter at breast height (DBH) in each plot were identified and mapped. These plots were classified by using two-way indicator species analysis (TWINSPAN) and detrended correspondence analysis (DCA). The species richness, abundance, basal area and importance value were chosen to compare structure, species composition and evergreen and deciduous ratio. Permutation-based multiple regression on distance matrices and multiple stepwise regression analysis were used to examine the relationship between species distribution and environmental factors.
Our results showed that the subtropical evergreen-deciduous broadleaved mixed forest in the southwest of Hubei could be classified into five community types based on quantitative methods: i.e. Cyclobalanopsis glauca-Eurya alata + Camellia cuspidate (community type I), Carpinus fargesiana + Cyclo- balanopsis glauca-Eurya alata (community type II), Carpinus fargesiana + Cyclobalanopsis glauca-Weigela japonica (community type III), Fagus lucida + Cyclobalanopsis multinervis-Eurya alata (community type IV) and Carpinus fargesiana + Daphniphyllum macropodum + Lithocarpus cleistocarpus-Eurya alata (community type V). Species richness, abundance, basal area and importance value of evergreen and deciduous species in each community types were different. Deciduous species in community II, community III and community V were significantly higher than evergreen species in terms of species richness, stem abundance, basal area and importance value, but they had no significant differences in community I and community IV. The richness of deciduous species in most community types were higher than those of evergreen species, meanwhile the abundance, basal area and importance value of deciduous species in the small size classes (1 cm ≤ DBH < 5 cm) in each community types were lower than those of evergreen species. In middle size classes (5 cm ≤ DBH < 10 cm), the richness, abundance, basal area and importance value of deciduous species were higher than those of evergreen species in community II, community III and community V. However, in community I and community IV, the evergreen species were larger than deciduous species in the four indexes. The richness of deciduous species in majority of the community types were higher than those of evergreen species in large size classes (DBH ≥ 10 cm). The elevation, slope and aspect, soil total nitrogen content, soil total phosphorus content, soil available nitrogen content and soil available phosphorus content were the major factors affecting evergreen and deciduous species distribution across the five community types.
[1] | Aerts R, Chapin FS III (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67. |
[2] | Ai XR, Tan XJ (1999). On the population structure of Davidia involucrata in Xingdoushan protected region. Journal of Hubei Institute for Nationalities (Natural Sciences), 17, 12-15. (in Chinese with English abstract) |
[2] | [艾训儒, 谭建锡 (1999). 星斗山自然保护区珙桐种群结构特征研究. 湖北民族学院学报(自然科学版), 17, 12-15.] |
[3] | An SQ, Zhang JH, Tan JK, Zhu XL, Zhao RL (1998). Review of studies on secondary forests in north subtropics, China.Journal of Wuhan Botanical Research, 16, 268-272. (in Chinese with English abstract) |
[3] | [安树青, 张久海, 谈健康, 朱学雷, 赵儒林 (1998). 中国北亚热带次生森林植被研究述评. 武汉植物学研究, 16, 268-272.] |
[4] | Antúnez I, Retamosa EC, Villar R (2001). Relative growth rate in phylogenetically related deciduous and evergreen woody species.Oecologia, 128, 172-180. |
[5] | Bai KD, Jiang DB, Cao KF, Wan XC, Liao DB (2010). Photosynthetic response to seasonal temperature changes in evergreen and deciduous broad-leaved trees in montane forests of Ailao Mountain and Mao’er Mountain.Acta Ecologica Sinica, 30, 905-913. (in Chinese with English abstract) |
[5] | [白坤栋, 蒋得斌, 曹坤芳, 万贤崇, 廖德宝 (2010). 哀牢山和猫儿山中山常绿和落叶阔叶树光合特性对季节温度变化的响应. 生态学报, 30, 905-913.] |
[6] | Ban JD, Qi GS (1995). A Study of Vegetation of Western Hubei. Press of Huazhong University of Science and Technology, Wuhan. (in Chinese) |
[6] | [班继德, 漆根深 (1995). 鄂西植被研究. 华中理工大学出版社, 武汉.] |
[7] | Bohlman SA, Adams JB, Smith MO, Peterson DL (1998). Seasonal foliage changes in the Eastern Amazon Basin detected from landsat thematic mapper satellite images.Biotropica, 30, 376-391. |
[8] | Bongers F, Poorter L, Hawthorne WD, Sheil D (2009). The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.Ecology Letters, 12, 798-805. |
[9] | Booth MS, Stark JM, Rastetter E (2005). Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data.Ecological Monographs, 75, 139-157. |
[10] | Cao TR, Qi CJ, Yu XL (1997). Studies on species diversity of Fagus lucida communities on the Badagongshan Mountain, Hunan.Chinese Biodiversity, 5(2), 112-120. (in Chinese with English abstract) |
[10] | [曹铁如, 祁承经, 喻勋林 (1997). 湖南八大公山亮叶水青冈群落物种多样性的研究. 生物多样性, 5(2), 112-120.] |
[11] | Chabot BF, Hicks DJ (1982). The ecology of leaf life spans.Annual Review of Ecology and Systematics, 13, 229-259. |
[12] | Condit R (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer Science & Business Media, Berlin. |
[13] | Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071. |
[14] | de Faria Lopes S, Schiavini I, do Vale VS, do Prado Júnior JA, de Silvério Arantes C (2012). Historical review of studies in seasonal semideciduous forests in Brazil: A perspective for conservation.Brazilian Geographical Journal: Geosciences and Humanities Research Medium, 3, 21-40. |
[15] | Ding Y, Zang RG (2008). Changes in deciduous trees during recovery of tropical lowland rain forests on abandoned shifting cultivation lands in Hainan Island, South China.Biodiversity Science, 16, 103-109. (in Chinese with English abstract) |
[15] | [丁易, 臧润国 (2008). 海南岛热带低地雨林刀耕火种弃耕地恢复过程中落叶树种的变化. 生物多样性, 16, 103-109.] |
[16] | Fang JY (2001). Re-discussion about the forest vegetation zonation in eastern China.Acta Botanica Sinica, 43, 522-533. (in Chinese with English abstract) |
[16] | [方精云 (2001). 也论我国东部植被带的划分. 植物学报, 43, 522-533.] |
[17] | Fang YP, Liu SX (2006). Research on the national protected plants in Xingdoushan Nature Reserve in Hubei Province.Subtropical Plant Science, 34(3), 48-52. (in Chinese with English abstrigt) |
[17] | [方元平, 刘胜祥 (2006). 湖北星斗山自然保护区国家重点保护野生植物调查研究. 亚热带植物科学, 34(3), 48-52.] |
[18] | Fu SX (2002). Flora of Hubeiensis. Hubei Science and Technology Press, Wuhan. (in Chinese) |
[18] | [傅书遐 (2002). 湖北植物志. 湖北科学技术出版社, 武汉.] |
[19] | Ge JW, Hu HX, Li B (2009). Scientific Survey and Study on Forest Biodiversity in Mulinzi Nature Reserve of Hubei, Central China. Science Press, Beijing. (in Chinese) |
[19] | [葛继稳, 胡鸿兴, 李博 (2009). 湖北木林子自然保护区森林生物多样性研究. 科学出版社, 北京.] |
[20] | Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems.Proceedings of the National Academy of Sciences of the United States of America, 104, 12942-12947. |
[21] | Han WH, Li XK, Ye D, Lü SH, Xiang WS, Song TQ, Cao HL (2009). Interspecific association and correlation between dominant woody plant species in an evergreen and deciduous broad-leaved mixed forest of karst area, Northwest Guangxi.Journal of Mountain Science, 27, 719-726. (in Chinese with English abstract) |
[21] | [韩文衡, 李先琨, 叶铎, 吕仕洪, 向悟生, 宋同清, 曹洪麟 (2009). 桂西北喀斯特区常绿落叶阔叶混交林种群种间联结性与相关性. 山地学报, 27, 719-726.] |
[22] | Hawthorne WD (1996). Holes and the sums of parts in Ghanaian forest: Regeneration, scale and sustainable use. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 104, 75-176. |
[23] | Kloeppel BD, Gower ST, Vogel JG, Reich PB (2000). Leaf- level resource use for evergreen and deciduous conifers along a resource availability gradient.Functional Ecology, 14, 281-292. |
[24] | Lai JS, Mi XC, Ren HB, Ma KP (2010). Numerical classification of associations in subtropical evergreen broad-leaved forest based on multivariate regression trees—a case study of 24 hm2 Gutianshan forest plot in China.Chinese Journal of Plant Ecology, 34, 761-769. (in Chinese with English abstract) |
[24] | [赖江山, 米湘成, 任海保, 马克平 (2010). 基于多元回归树的常绿阔叶林群丛数量分类——以古田山24公顷森林样地为例. 植物生态学报, 34, 761-769.] |
[25] | Lechowicz MJ (1984). Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities.The American Naturalist, 124, 821-842. |
[26] | Lian KM, Wu YJ, Zhang L, Zhao LL, Zhang F (2015). Numerical classification and ordination of wild Castanea mollissima communities in Taikuan River Nature Reserve, Shanxi.Chinese Journal of Ecology, 34, 33-39. (in Chinese with English abstract) |
[26] | [廉凯敏, 吴应建, 张丽, 赵璐璐, 张峰 (2015). 太宽河自然保护区板栗群落数量分类与排序. 生态学杂志, 34, 33-39.] |
[27] | Lichstein JW (2007). Multiple regression on distance matrices: A multivariate spatial analysis tool.Plant Ecology, 188, 117-131. |
[28] | Liu HB, Wang QG, Lu JM, Xu YZ, Lu ZJ, Qiao XJ, Bao DC, Guo YL, Meng HJ, Jiang MX (2014). Root-sprouting ability in an evergreen and deciduous broad-leaved mixed forest.Chinese Science Bulletin, 59, 3491-3498. (in Chinese) |
[28] | [刘海波, 王庆刚, 路俊盟, 徐耀粘, 卢志军, 乔秀娟, 鲍大川, 郭屹立, 孟红杰, 江明喜 (2014). 八大公山常绿落叶阔叶混交林根萌能力. 科学通报, 59, 3491-3498.] |
[29] | Liu HJ, Guo K (2003). Classification and ordination analysis of plant communities in inter-dune lowland in Hunshandak Sandy Land.Acta Ecologica Sinica, 23, 2163-2169. (in Chinese with English abstract) |
[29] | [刘海江, 郭柯 (2003). 浑善达克沙地丘间低地植物群落的分类与排序. 生态学报, 23, 2163-2169.] |
[30] | Liu WD, Ding Y, Zang RG, Su JR, Yang M, Cai DL, Li RC, Chen SW (2010). Quantitative classification and ordination of low-altitudinal tropical forests in Bawangling, Hainan Island.Chinese Journal of Ecology, 29, 1526-1532. (in Chinese with English abstract) |
[30] | [刘万德, 丁易, 臧润国, 苏建荣, 杨民, 蔡笃磊, 李儒财, 陈少伟 (2010). 海南岛霸王岭林区低海拔热带林群落数量分类与排序. 生态学杂志, 29, 1526-1532.] |
[31] | Lomolino MV (2001). Elevation gradients of species-density: Historical and prospective views.Global Ecology and Biogeography, 10, 3-13. |
[32] | Lu SF, Liu SX, Fang YP (2005). A preliminary research of invasive species around Xingdoushan National Nature Reserve, Hubei.Journal of Huanggang Normal University, 25(3), 48-52. (in Chinese with English abstract) |
[32] | [卢少飞, 刘胜祥, 方元平 (2005). 星斗山国家级自然保护区外来入侵植物初步研究. 黄冈师范学院学报, 25(3), 48-52.] |
[33] | Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S (2010). Introduction: Elevation gradients in the tropics: Laboratories for ecosystem ecology and global change research.Global Change Biology, 16, 3171-3175. |
[34] | Mueller KE, Hobbie SE, Oleksyn J, Reich PB, Eissenstat DM (2012). Do evergreen and deciduous trees have different effects on net N mineralization in soil.Ecology, 93, 1463-1472. |
[35] | Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008). Scale effects and human impact on the elevational species richness gradients.Nature, 453, 216-219. |
[36] | Oliveira-Filho AT, Jarenkow JA, Rodal MJN (2006). Floristic relationships of seasonalre dry forests of eastern South America based on tree species distribution patterns. In: Pennington RT, Ratter JA eds. Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation. CRC Press, Boca Raton, USA. 151-184. |
[37] | Ozinga WA, Schaminée JHJ, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, van Groenendael JM (2005). Predictability of plant species composition from environmental conditions is constrained by dispersal limitation.Oikos, 108, 555-561. |
[38] | Poorter L, Markesteijn L (2008). Seedling traits determine drought tolerance of tropical tree species.Biotropica, 40, 321-331. |
[39] | Quigley MF, Platt WJ (2003). Composition and structure of seasonally deciduous forests in the Americas.Ecological Monographs, 73, 87-106. |
[40] | Reich PB, Bakken P, Carlson D, Frelich LE, Friedman SK, Grigal DF (2001). Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests.Ecology, 82, 2731-2748. |
[41] | Reich PB, Uhl C, Walters MB, Prugh L, Ellsworth DS (2004). Leaf demography and phenology in Amazonian rain forest: A census of 40000 leaves of 23 tree species.Ecological Monographs, 74, 3-23. |
[42] | Shen ZH, Zhao ZE, Wu JQ, Jin YX, Huang HD, Jiang MX (1999). Spatial pattern and relation with the topographical factors of the rare pare species at Dalaoling in the Three Gorges Region.Acta Phytoecologica Sinica, 23, 171-180. (in Chinese with English abstract) |
[42] | [沈泽昊, 赵子恩, 吴金清, 金义兴, 黄汉东, 江明喜 (1999). 三峡地区大老岭珍稀植物的分布格局及其与地形因子的关系. 植物生态学报, 23, 171-180.] |
[43] | Shen ZH, Fang JY (2001). Niche comparison of two Fagus species based on the topographic patterns of their populations. Acta Phytoecologica Sinica, 25, 392-398. (in Chinese with English abstract) |
[43] | [沈泽昊, 方精云 (2001). 基于种群分布地形格局的两种水青冈生态位比较研究. 植物生态学报, 25, 392-398.] |
[44] | Song K (2012). Vegetation Characteristic of Evergreen- deciduous Broadleaved Forest Ecotone and Its Formation Mechanism, a Study in Anhui. PhD dissertation, East China Normal University, Shanghai. 50-60. (in Chinese with English abstract). |
[44] | [宋坤 (2012). 安徽常绿阔叶林-落叶阔叶林交错带的森林植被特征及其成因. 博士学位论文, 华东师范大学, 上海. 50-60.] |
[45] | Song YC (1999). Perspective of the vegetation zonation of forest region in eastern China.Acta Botanica Sinica, 41, 541-552. (in Chinese with English abstract) |
[45] | [宋永昌 (1999). 中国东部森林植被带划分之我见. 植物学报, 41, 541-552.] |
[46] | Song YC (2004). Tentative classification scheme of evergreen broad-leaved forests of China.Acta Phytoecologica Sinica, 28, 435-448. (in Chinese with English abstract) |
[46] | [宋永昌 (2004). 中国常绿阔叶林分类试行方案. 植物生态学报, 28, 435-448.] |
[47] | Sun J, Li XZ, Hu YM, Wang XW, Lü JJ, Li ZM, Chen HW (2009). Classification, species diversity, and species distribution gradient of permafrost wetland plant communities in Great Xing’an Mountains valleys of Northeast China.Chinese Journal of Applied Ecology, 20, 2049-2056. (in Chinese with English abstract) |
[47] | [孙菊, 李秀珍, 胡远满, 王宪伟, 吕久俊, 李宗梅, 陈宏伟 (2009). 大兴安岭沟谷冻土湿地植物群落分类、物种多样性和物种分布梯度. 应用生态学报, 20, 2049-2056.] |
[48] | Tang JM, Dai HH, Xun JG, Zhai MP (2010). Effects on regeneration pattern for woodland fertility of mixed evergreen and deciduous broadleaved mountain forests.Hubei Forestry Science and Technology, (6), 7-10. (in Chinese with English abstract) |
[48] | [汤景明, 戴汉会, 荀继刚, 翟明普 (2010). 山地常绿落叶阔叶混交林更新方式对林地肥力的影响. 湖北林业科技, (6), 7-10.] |
[49] | Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Bongers F (2011). Climate and soil drive forest structure in Bolivian lowland forests.Journal of Tropical Ecology, 27, 333-345. |
[50] | Wang ZX, Lei Y, Fujiwara K, Liu LH, Xue YG (2006). Community classification, species composition, and regeneration of Fagus lucida forests in subtropical mountains, China.Biodiversity Science, 14, 29-40. (in Chinese with English abstract) |
[50] | [汪正祥, 雷耘, Fujiwara K, 刘林翰, 薛跃规 (2006). 亚热带山地亮叶水青冈林的群落分类及物种组成与更新. 生物多样性, 14, 29-40.] |
[51] | Williams LJ, Bunyavejchewin S, Baker PJ (2008). Deciduousness in a seasonal tropical forest in western Thailand: Interannual and intraspecific variation in timing, duration and environmental cues.Oecologia, 155, 571-582. |
[52] | Woodward FI (1987). Climate and Plant Distribution. Cambridge University Press, Cambridge, UK. |
[53] | Wu ZL (2000). Forest of China. China Forestry Publishing House, Beijing. (in Chinese) |
[53] | [吴中伦 (2000). 中国森林. 中国林业出版社, 北京.] |
[54] | Wu ZY (1980). Chinese Vegetation. Science Press, Beijing. 279-306. (in Chinese) |
[54] | [吴征镒 (1980). 中国植被. 科学出版社, 北京. 279-306.] |
[55] | Wyka TP, Oleksyn J (2014). Photosynthetic ecophysiology of evergreen leaves in the woody angiosperms—A review.Dendrobiology, 72, 3-27. |
[56] | Xiong XG, Xiong GM, Xie ZQ (2002). The regeneration of tree species in the mheed evergreen-deciduous broad-leaved forests in the Shennongjia Mountains, Hubei Province.Acta Ecologica Sinica, 22, 2001-2005. (in Chinese with English abstract) |
[56] | [熊小刚, 熊高明, 谢宗强 (2002). 神农架地区常绿落叶阔叶混交林树种更新研究. 生态学报, 22, 2001-2005.] |
[57] | Yuan X, Ma KM, Wang D (2013). Optimal number of herb vegetation clusters: A case study on Yellow River Delta.Acta Ecologica Sinica, 33, 2514-2521. (in Chinese with English abstract) |
[57] | [袁秀, 马克明, 王德 (2013). 草地植物群落最优分类数的确定——以黄河三角洲为例. 生态学报, 33, 2514-2521.] |
[58] | Zhang JT (1995). Quantitative Vegetation Ecology. Science and Technology Press of China, Beijing. (in Chinese) |
[58] | [张金屯 (1995). 植被数量生态学方法. 中国科学技术出版社, 北京.] |
[59] | Zhang M, Xiong GM, Xie ZQ (2004). Ecological investigation of the mixed broad leaved deciduous and evergreen forest in Three Gorges Reservoir Area.Resources and Environment in the Yangtze Basin, 13, 168-173. (in Chinese with English abstract) |
[59] | [张谧, 熊高明, 谢宗强 (2004). 三峡库区常绿落叶阔叶混交林的监测研究. 长江流域资源与环境, 13, 168-173.] |
[60] | Zhao LJ, Xiang WH, Li JX, Deng XW, Liu C (2013). Floristic composition, structure and phytogeographic characteristics in a Lithocarpus glaber-Cyclobalanopsis glauca forest community in the subtropical region.Scientia Silvae Sinicae, 49(12), 10-17. (in Chinese with English abstract) |
[60] | [赵丽娟, 项文化, 李家湘, 邓湘雯, 刘聪 (2013). 中亚热带石栎-青冈群落物种组成、结构及区系特征. 林业科学, 49(12), 10-17.] |
[61] | Zhou GY (1996). The deciduous broad-leaved forest of China—Also discussing about the belonging of the evergreen mixed deciduous broad-leaved forest.Journal of Ningbo University, 9(3), 93-102. (in Chinese with English abstract) |
[61] | [周光裕 (1996). 中国的落叶阔叶林——兼论常绿落叶阔叶混交林的归属问题. 宁波大学学报, 9(3), 93-102.] |
/
〈 |
|
〉 |