研究论文

放牧对内蒙古典型草原α、β和γ多样性的影响机制

展开
  • 1内蒙古农业大学生态与环境学院, 呼和浩特 010018
    2中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
*(E-mail: wangmj_0540@163.com)

收稿日期: 2013-09-25

  录用日期: 2014-01-20

  网络出版日期: 2014-02-12

基金资助

“十二五”农村领域国家科技计划项目(2012BAD16B03);国家科技支撑计划项目(2011-BAC07B01);中国科学院战略性先导科技专项(XDA05050400)

Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland

Expand
  • 1College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Huhhot, 010018, China
    2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 2013-09-25

  Accepted date: 2014-01-20

  Online published: 2014-02-12

摘要

人类活动干扰对生物多样性和生态系统功能的影响机制是近年来生态学研究的一个热点问题。该研究以内蒙古锡林郭勒草原生态系统国家野外科学观测研究站的大型放牧控制实验为平台, 系统地研究了不同降水(丰水年份和平水年份)和地形(平地和坡地)条件下, 放牧对典型草原不同空间尺度植物多样性(α、β和γ多样性)的影响。研究发现: (1)降水和地形条件及其交互效应对植物多样性有明显的影响, 丰水年份的α、β和γ多样性均高于平水年份; 降水和地形条件存在交互效应, 平水年份坡地系统的α多样性高于平地系统, 丰水年份平地系统的α和γ多样性高于坡地系统, 而地形对β多样性并没有显著影响; (2)随着放牧强度的增加, 平地和坡地的α多样性均呈逐渐下降的趋势, 不同植物群落成员型(优势种、常见种和稀有种)对放牧的响应及其对α多样性的贡献不同, 其中稀有种对α多样性的贡献最大, 常见种次之, 优势种最小; (3) γ多样性对放牧强度的响应受地形条件的影响, 随着放牧强度的增加, 平地γ多样性呈逐渐下降的趋势, 而坡地γ多样性呈现先减少后增加的趋势; (4)平地β多样性随放牧强度的增加而逐渐减小, 而坡地并没有明显的规律。该研究表明, 植物多样性对放牧的响应受降水和地形因素的调控, 平地对放牧的缓冲能力强于坡地, 干旱会加剧过度放牧对生物多样性的影响; 稀有种对于草地生态系统的多样性维持具有重要意义。因此, 在确定合理的放牧强度时, 应结合降水和地形条件。在平水年份需加强平地系统植物多样性的保护, 而在丰水年份需加强坡地系统植物多样性的保护, 从而实现草地资源的可持续性利用。

本文引用格式

杨婧, 褚鹏飞, 陈迪马, 王明玖, 白永飞 . 放牧对内蒙古典型草原α、β和γ多样性的影响机制[J]. 植物生态学报, 2014 , 38(2) : 188 -200 . DOI: 10.3724/SP.J.1258.2014.00017

Abstract

Aims Human disturbance, such as overgrazing have resulted in widespread declines in biodiversity and ecosystem functioning and services in arid and semiarid grasslands worldwide. This study is aimed to examine the effects of grazing intensity, topography and precipitation fluctuation on plant diversity across three levels of organization (i.e., plant species, functional group, and community) in a typical steppe of the Inner Mongolia grassland.
Methods Based on a long-term grazing experiment maintained for eight years with seven levels of grazing intensity and two topographic systems in a typical steppe of the Inner Mongolia grassland, the effects of grazing intensity, topography (flat vs. slope), and precipitation fluctuations (wet vs. normal years) on plant diversity (i.e. α, β and γ diversity) and their controlling mechanisms were examined.
Important findings Our results showed that: (1) The diversity-grazing intensity relationship differed between two topographic systems and over two years (wet vs. normal years). The α, β, and γ diversity in the wet year (2012) were higher than those in the normal year (2011). The effect of topography on plant diversity was dependent on precipitation, with higher α diversity in the slope system and normal year and higher α and γ diversity in the flat system and wet year. There was no significant effect of topography on β diversity. (2) The α diversity decreased with increasing grazing intensity in both the flat and slope systems. The α diversity response to grazing differed substantially among the dominant species, common species, and rare species in the two topographic systems, with the highest negative response for rare species, intermediate negative response for common species, and the weakest response for dominant species. (3) In the flat system, γ diversity declined with increasing grazing intensity, while it firstly decreased and then increased at the intermediate level of grazing intensity in the slope system. (4) The β diversity decreased with increasing grazing intensity in the flat system due to grazing-induced species convergence, while it did not show any tendency in the slope system. Our results suggest that the topography and precipitation are two key factors governing the relationship between plant biodiversity and grazing intensity in the arid and semiarid grasslands. The loss of species in the dry year was greater in the flat system than in the slope system, while the opposite result was found in the wet year. The rare species plays an important role in maintaining species diversity. These findings provide a better understanding of the biodiversity-grazing intensity relationship in the context of different precipitation and topographic conditions in the semiarid steppe and beyond.

参考文献

[1] Adler P, Raff D, Lauenroth W (2001). The effect of grazing on the spatial heterogeneity of vegetation. Oecologia, 128, 465-479.
[2] Amezaga IS, Mendarte SI, Albizu I, Besga G, Garbisu C, Onaindia M (2004). Grazing intensity, aspect, and slope effects on limestone grassland structure. Rangeland Ecology & Management, 57, 606-612.
[3] Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources, 29, 261-299.
[4] Austrheim G, Eriksson O (2001). Plant species diversity and grazing in the Scandinavian mountains―patterns and processes at different spatial scales. Ecography, 24, 683-695.
[5] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
[6] Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372.
[7] Bai YF, Wu JG, Clark CM, Pan QM, Zhang LX, Chen SP, Wang QB, Han XG (2012). Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49, 1204-1215.
[8] Bai YF, Xing XR, Xu ZX, Li DX (2000a). β-diversity of Stipa communities in Inner Mongolia Plateau. Chinese Journal of Applied Ecology, 11, 408-412. (in Chinese with English abstract)
[8] [ 白永飞, 邢雪荣, 许志信, 李德新 (2000a). 内蒙古高原针茅草原群落β-多样性研究. 应用生态学报, 11, 408-412.]
[9] Bai YF, Xu ZX, Li DX (2000b). Study on α-diversity of four Stipa communities in Inner Mongolia Plateau. Biodiversity Science, 8, 353-360. (in Chinese with English abstract)
[9] [ 白永飞, 许志信, 李德新 (2000). 内蒙古高原针茅草原群落α-多样性研究. 生物多样性, 8, 353-360.]
[10] Bardgett RD, Wardle DA (2003). Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258-2268.
[11] Bennie J, Hill MO, Baxter R, Huntley B (2006). Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 94, 355-368.
[12] Chang XL, Zhao AF (2000). Responses of species diversity to precipitation change on fixed-dunes of the Naiman Banner region. Acta Phytoecologica Sinica, 24, 147-151. (in Chinese with English abstract)
[12] [ 常学礼, 赵爱芬 (2000). 科尔沁沙地固定沙丘植被物种多样性对降水变化的响应. 植物生态学报, 24, 147-151.]
[13] Chen DM, Zheng SX, Shan YM, Taube F, Bai YF (2013). Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Functional Ecology, 27, 273-281.
[14] Connell JH (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
[15] Crist TO, Veech JA (2006). Additive partitioning of rarefaction curves and species-area relationships: unifying α-, β- and γ-diversity with sample size and habitat area. Ecology Letters, 9, 923-932.
[16] Department of Animal Husbandry and Veterinary, the General Station of Animal Husbandry and Veterinary, the Ministry of Agriculture, P. R. China (1996). Rangeland Resources of China. Chinese Science and Technology Press, Beijing. (in Chinese)
[16] [ 中华人民共和国农业部畜牧兽医司, 全国畜牧兽医总站 (1996). 中国草地资源. 中国科学技术出版社, 北京.]
[17] Gibson DJ (2009). Grasses and Grassland Ecology. Oxford University Press, Oxford, UK.
[18] Grime JP (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344-347.
[19] Hobbs RJ, Huenneke LF (1992). Disturbance, diversity, and invasion: implications for conservation. Conservation Biology, 6, 324-337.
[20] Kareiva P (1996). Diversity and sustainability on the prairie. Nature, 379, 673-674.
[21] Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011). Disentangling the drivers of β-diversity along latitudinal and elevational gradients. Science, 333, 1755-1758.
[22] Kunin WE, Gaston KJ (1997). The Biology of Rarity: Causes and Consequences of Rare-Common Differences. Springer, New York.
[23] Lande R (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 5-1 among multiple communities. Oikos, 76, 5-13
[24] Lauenroth WK, Dodd JL, Sims PL (1978). The effects of water-induced and nitrogen-induced stresses on plant community structure in a semi-arid grassland. Oecologia, 36, 211-222.
[25] Liu DW, Zhang FC, Wang MJ, Cui GW (2012). The influence of grazing intensity on community characteristics and diversity of Deyeuxia angustifolia meadow in Sanjiang Plain. Chinese Journal of Grassland, 34(2), 81-86. (in Chinese with English abstract)
[25] [ 刘冬伟, 张风承, 王明君, 崔国文 (2012). 放牧强度对三江平原小叶章草甸群落特征及多样性的影响. 中国草地学报, 34(2), 81-86.]
[26] Liu ZG, Li ZQ (2006). Plant biodiversity of Aretemisia frigida communities on degraded grasslands under different grazing intensities after thirteen-year enclosure. Acta Ecologica Sinica, 26, 475-482. (in Chinese with English abstract)
[26] [ 刘振国, 李镇清 (2006). 退化草原冷蒿群落13年不同放牧强度后的植物多样性. 生态学报, 26, 475-482.]
[27] Lyons KG, Brigham CA, Traut BH, Schwartz MW (2005). Rare species and ecosystem functioning. Conservation Biology, 19, 1019-1024
[28] McNaughton SJ (1985). Ecology of a grazing ecosystem: the Serengeti. Ecological Monographs, 55, 259-294.
[29] Meng XH, Li XL, Xin XP, Zhou YZ (2009). Study on community characteristics and α diversity under different grazing intensity on Leymus chinensis (Trin.) Tzvel. meadow steppe of Hulunbeier. Acta Agrectir Sinica, 17, 239-244. (in Chinese with English abstract)
[29] [ 蒙旭辉, 李向林, 辛晓平, 周尧治 (2009). 不同放牧强度下羊草草甸草原群落特征及多样性分析. 草地学报, 17, 239-244.]
[30] Milchunas D, Noy-Meir I (2002). Grazing refuges, external avoidance of herbivory and plant diversity. Oikos, 99, 113-130.
[31] Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366.
[32] Milchunas DG, Sala OE, Lauenroth WK (1988). A generalized model of the effects of grazing by large herbivores on grassland community structure. The American Naturalist, 132, 87-106
[33] Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N (2013). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology, 11, e1001569.
[34] Olff H, Ritchie ME (1998). Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 13, 261- 265.
[35] Pyk?l? J, Luoto M, Heikkinen RK, Kontula T (2005). Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic and Applied Ecology, 6, 25-33.
[36] Reynolds JF, Stafford Smith D (2002). Global Desertification: Do Humans Cause Deserts? Dahlem University Press. Berlin. 88.
[37] Sasaki T, Okayasu T, Jamsran U, Takeuchi K (2008). Threshold changes in vegetation along a grazing gradient in Mongolian rangelands. Journal of Ecology, 96, 145-154.
[38] Sch?nbach P, Wan HW, Gierus M, Bai YF, Müller K, Lin LJ, Susenbeth A, Taube F (2011). Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant and Soil, 340, 103-115.
[39] Shan YM, Chen DM, Guan XX, Zheng SX, Chen HJ, Wang MJ, Bai YF (2011). Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biology and Biochemistry, 43, 1943-1954.
[40] Tang ZY, Fang JY (2004). A review on the elevational patterns of plant species diversity. Biodiversity Science, 12, 20-28. (in Chinese with English abstract)
[40] [ 唐志尧, 方精云 (2004). 植物物种多样性的垂直分布格局. 生物多样性, 12, 20-28.]
[41] Tilman D, Downing JA (1994). Biodiversity and stability in grasslands. Nature, 367, 363-365.
[42] Tilman D, Haddi A El (1992). Drought and biodiversity in grasslands. Oecologia, 89, 257-264.
[43] Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
[44] Wan HW, Bai YF, Schonbach P, Gierus M, Taube F (2011). Effects of grazing management system on plant community structure and functioning in a semiarid steppe: scaling from species to community. Plant and Soil, 340, 215-226.
[45] Wang CT, Wang QJ, Shen ZX, Jing ZC, Wang WY (2003). Response of biodiversity and productivity to simulated rainfall on an alpine Kobresia humilis meadow. Acta Botanica Boreali-Occidentalia Sinica, 23, 1713-1718. (in Chinese with English abstract)
[45] [ 王长庭, 王启基, 沈振西, 景增春, 王文颖 (2003). 高寒矮嵩草草甸群落植物多样性和初级生产力对模拟降水的响应. 西北植物学报, 23, 1713-1718.]
[46] Wang GJ, Wang SP, Hao YB, Cai XC (2005). Effect of grazing on the plant functional group diversity and community biomass and their relationship along a precipitation gradient in Inner Mongolia Steppe. Acta Ecologica Sinica, 25, 1649-1656. (in Chinese with English abstract)
[46] [ 王国杰, 汪诗平, 郝彦宾, 蔡学彩 (2005). 水分梯度上放牧对内蒙古主要草原群落功能群多样性与生产力关系的影响. 生态学报, 25, 1649-1656.]
[47] West NE (1993). Biodiversity of rangelands. Journal of Range Management, 46, 2-13.
[48] White RP, Murray S, Rohweder M (2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington DC.
[49] Whittaker RH (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338
[50] Whittaker RJ, Willis KJ, Field R (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470
[51] Wu JS, Li XJ, Shen ZX, Zhang XZ, Shi PL, Yu CQ, Wang JS, Zhou YT (2012). Species diversity distribution pattern of alpine grasslands communities along a precipitation gra- dient across Northern Tibetan Plateau. Acta Prataculturae Sinica, 21, 17-25. (in Chinese with English abstract)
[51] [ 武建双, 李晓佳, 沈振西, 张宪洲, 石培礼, 余成群, 王景升, 周宇庭 (2012). 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 21, 17-25.]
[52] Xue R, Zheng SX, Bai YF (2010). Impacts of grazing intensity and management regimes on aboveground primary productivity and compensatory growth of grassland ecosystems in Inner Mongolia. Biodiversity Science, 18, 300-311. (in Chinese with English abstract)
[52] [ 薛睿, 郑淑霞, 白永飞 (2010). 不同利用方式和载畜率对内蒙古典型草原群落初级生产力和植物补偿性生长的影响. 生物多样性, 18, 300-311.]
[53] Yachi S, Loreau M (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 96, 1463-1468.
[54] Yuan JL, Jing XL, Huang WB, Wang G (2004). Effects of grazing intensity and grazing season on plant species diversity in alpine meadow. Acta Prataculturae Sinica, 13, 16-21. (in Chinese with English abstract)
[54] [ 袁建立, 江小蕾, 黄文冰, 王刚 (2004). 放牧季节及放牧强度对高寒草地植物多样性的影响. 草业学报, 13, 16-21.]
[55] Zheng SX, Lan ZC, Li WH, Shao RX, Shan YM, Wan HW, Taube F, Bai YF (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant and Soil, 340, 141-155.
[56] Zheng W, Dong QM, Li SX, Li HT, Liu Y, Yang SH (2012). Impact of grazing intensities on community biodiversity and productivity of alpine grassland in Qinghai Lake region. Acta Prataculturae Sinica, 20, 1033-1038. (in Chinese with English abstract)
[56] [ 郑伟, 董全民, 李世雄, 李红涛, 刘玉, 杨时海 (2012). 放牧强度对环青海湖高寒草原群落物种多样性和生产力的影响. 草地学报, 20, 1033-1038.]
[57] Zhu SH, Xu CL, Fang QE, Liu FY (2006). Effect of white yak grazing intensity on species diversity of plant communities in alpine grassland. Journal of Gansu Agricultural University, 41, 71-75. (in Chinese with English abstract)
[57] [ 朱绍宏, 徐长林, 方强恩, 刘发央 (2006). 白牦牛放牧强度对高寒草原植物群落物种多样性的影响. 甘肃农业大学学报, 41, 71-75.]
文章导航

/

[an error occurred while processing this directive]