海南岛霸王岭热带低地雨林树木的空间格局
收稿日期: 2011-10-29
录用日期: 2012-01-12
网络出版日期: 2012-03-28
Spatial pattern of trees in tropical lowland rain forest in Bawangling of Hainan Island, China
Received date: 2011-10-29
Accepted date: 2012-01-12
Online published: 2012-03-28
树木空间格局及其形成过程是物种共存及生物多样性维持机制研究的一个重要方面。该文以海南岛两个1 hm 2的典型热带低地雨林老龄林森林动态样地为基础, 通过4个点格局模型(均质Poisson过程、异质Poisson过程、均质Thomas过程和异质Thomas过程)模拟扩散限制和生境异质性作用对树木空间分布格局的影响, 并分析不同空间尺度下(< 2 m, 2-5 m, 5-10 m, 10-15 m, 15-20 m和20-25 m)不同作用的相对重要性。结果表明: 热带低地雨林的所有树木总体上呈现聚集分布的空间格局, 随着尺度的增大, 聚集强度逐渐减小。树种在模拟空间分布格局最优模型中的比例由高到低分别是: 均质Thomas过程, 均质Poisson过程、异质Thomas过程和异质Poisson过程。扩散限制作用是形成热带低地雨林树木空间分布格局最重要的生态过程, 其次是完全随机作用以及生境异质性和扩散限制的联合作用, 而生境异质性的作用最小。不同空间尺度上模拟各树种空间分布格局的最优模型比例差异显著, 扩散限制作用能够在多数空间尺度上模拟多个树种的空间分布格局, 其次为随机作用; 生境异质性和扩散限制的联合作用主要在小尺度(0-5 m)影响树种分布, 而生境异质性在较大尺度(15-25 m)上影响树种的空间分布格局。
黄运峰,丁易,臧润国,李小成,邹正冲,韩文涛 . 海南岛霸王岭热带低地雨林树木的空间格局[J]. 植物生态学报, 2012 , 36(4) : 269 -280 . DOI: 10.3724/SP.J.1258.2012.00269
Aims Understanding processes underlying spatial distribution of tree species is fundamental to the study of species coexistence and diversity. Our objective was to determine the spatial structure and identify the processes that may generate spatial patterns of trees in a tropical lowland rain forest community on Hainan Island of South China.
Methods Based on four models of point pattern analysis (homogenous Poisson process, inhomogenous Poisson process, homogenous Thomas process and inhomogenous Thomas process), we evaluated the potential contribution of habitat heterogeneity and dispersal limitation to the formation of spatial patterns of tree species in two 1-hm 2 stem-mapped forest dynamic plots. The relative importance of each process was assessed at six different spatial scales (< 2 m, 2-5 m, 5-10 m, 10-15 m, 15-20 m and 20-25 m).
Important findings All stems combined revealed a strong aggregation at short distance (≤2 m), and the degree of aggregation decreased with increasing distance. Among the four models simulating tree distribution and patterning, the homogeneous Thomas process was the best-fit model. This result suggested that spatial patterns of tree species in tropical lowland rain forest might be formed by dispersal limitation. The homogeneous Poisson process that models the effect of spatial complete randomness was the second-best model. The inhomogeneous Thomas process and inhomogeneous Poisson process were equally important to forming spatial patterns of trees; they simulated the joint effects of habitat associations and dispersal limitation and modeled heterogeneity, respectively. The proportion of best-fit models differed across different scales. The dispersal limitation was a most important mechanism in spatial patterning of tree species at most scales, while complete randomness process was second in importance. The joint effects of habitat associations and dispersal limitation mainly influenced tree distribution at small scales (0-5 m). However, habitat heterogeneity only affected the distribution at larger scales (15-25 m).
[1] | Baddeley A, Turner R (2002). Practical maximum pseudo-likelihood for spatial point patterns. Australian and New Zealand Journal of Statistics, 42, 283-322. |
[2] | Baddeley A, Turner R (2005). Spatstat: an R package for anal- yzing spatial point patterns. Journal of Statistical Software, 12(6), 1-42. |
[3] | Bin Y, Wang ZG, Wang ZM, Ye WH, Cao HL, Lian JY (2010). The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest. Plant Ecology, 209, 237-256. |
[4] | Carson WP, Anderson JT, Leigh J, Giles E, Schnitzer SA (2008). Challenges associated with testing and falsifying the Janzen-Connell hypothesis: a review and critique. In: Carson WP, Schnitzer SA eds. Tropical Forest Comm- unity Ecology. Wiley-Blackwell, Chichester, UK. 210-241. |
[5] | Comita LS, Condit R, Hubbell SP (2007). Developmental changes in habitat associations of tropical trees. Journal of Ecology, 95, 482-492. |
[6] | Condit R (1995). Research in large, long-term tropical forest plots. Trends in Ecology and Evolution, 10, 18-22. |
[7] | Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418. |
[8] | Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR eds. Dynamics of Populations. Centre for Agricultural Publish-ing and Documentation, Wageningen, The Netherlands. 298-312. |
[9] | Dale MRT (1999). Spatial Pattern Analysis in Plant Ecology. Cambridge University Press, Cambridge, UK. |
[10] | Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002). Role of dispersal in the recruitment limitation of neotropical pioneer species. Journal of Ecology, 90, 714-727. |
[11] | Diggle PJ (2003). Statistical Analysis of Spatial Point Patterns. Arnold Press, London. |
[12] | Ding Y, Zang RG, Letcher SG, Liu SR, He FL (2012). Dist- urbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos, doi: 10.1111/j.1600-0706.2011.19992.X. |
[13] | Ding Y (丁易), Zang RG (臧润国), Yang SB (杨世彬), Cai DL (蔡笃磊), Wang JQ (王进强), Zhou ZL (周照骊) (2009). Effects of palms on trees regeneration in the tropical lowland rain forest of Bawangling, Hainan Island. Scientia Silvae Sinicae (林业科学) 45, 18-23. (in Chinese with English abstract) |
[14] | Gaston KJ, Blackburn TM (2000). Pattern and Process in Macroecology. Blackwell, Malden, USA. |
[15] | Getzin S, Dean C, He FL, Trofymow JA, Wiegand K, Wiegand T (2006). Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 29, 671-682. |
[16] | G?tzenberger L, de Bello F, Br?then KA, Davison J, Dubuis A, Guisan A, Lep? J, Lindborg R, Moora M, P?rtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2011). Ecological assembly rules in plant communities- approaches, patterns and prospects. Biological Reviews, 87, 111-127. |
[17] | Gray L, He FL (2009). Spatial point-pattern analysis for detecting density-dependent competition in a boreal chr- onosequence of Alberta. Forest Ecology and Manage- ment, 259, 98-106. |
[18] | Harms KE, Condit R, Hubbell SP, Foster RB (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
[19] | He FL, Duncan RP (2000). Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676-688. |
[20] | He FL, Legendre P, LaFrankie JV (1997). Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science, 8, 105-114. |
[21] | Hu YJ(胡玉佳), Li YX (李玉杏) (1992). Tropical Rain Forest in Hainan Island. Guangdong Higher Education Press, Guangzhou. (in Chinese) |
[22] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[23] | Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, de Lao SL (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557. |
[24] | Illian J, Penttinen A, Stoyan H, Stoyan D (2008). Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, New York. |
[25] | Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501. |
[26] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104, 864-869. |
[27] | Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009). Ecological information from spatial patterns of plants: insights from point process theory. Journal of Ecology, 97, 616-628. |
[28] | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674. |
[29] | Levin SA (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943-1967. |
[30] | Levine JM, Murrell DJ (2003). The community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34, 549-574. |
[31] | Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009). Spatial distributions of tree species in a subtropical forest of China. Oikos, 118, 495-502. |
[32] | Lin YC, Chang LW, Yang KC, Wang HH, Sun IF (2011). Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia, 165, 175-184. |
[33] | Ma KP(马克平) (2008). Large scale permanent plots: important platform for long term research on biodiversity in forest ecosystem. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 237-237. (in Chinese with English abstract) |
[34] | Perry GLW, Enright NJ, Miller BP, Lamont BB (2008). Spatial patterns in species-rich sclerophyll shrublands of Southwestern Australia. Journal of Vegetation Science, 19, 705-716. |
[35] | Plotkin JB, Chave J, Ashton PS (2002). Cluster analysis of spatial patterns in Malaysian tree species. The American Naturalist, 160, 629-644. |
[36] | R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[37] | Réjou-Méchain M, Flores O, Bourland N, Doucet JL, Fétéké RF, Pasquier A, Hardy OJ (2011). Spatial aggregation of tropical trees at multiple spatial scales. Journal of Ecology, 99, 1373-1381. |
[38] | Seidler TG, Plotkin JB (2006). Seed dispersal and spatial pattern in tropical trees. PLoS Biology, 4, e344. |
[39] | Shen GC, Yu MJ, Hu XS, Mi XC, Ren HB, Sun IF, Ma KP (2009). Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology, 90, 3033-3041. |
[40] | Stoll P, Bergius E (2005). Pattern and process: competition causes regular spacing of individuals within plant populations. Journal of Ecology, 93, 395-403. |
[41] | Stoyan D, Penttinen A (2000). Recent applications of point process methods in forestry statistics. Statistical Science, 15, 61-78. |
[42] | Waagepetersen R, Guan YT (2009). Two-step estimation for inhomogeneous spatial point processes. Journal of the Royal Statistical Society: Series B (Statistical Metho- dology), 71, 685-702. |
[43] | Waagepetersen R (2007). An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics, 63, 252-258. |
[44] | Wang XG, Wiegand T, Wolf A, Howe R, Davies SJ, Hao ZQ (2011). Spatial patterns of tree species richness in two temperate forests. Journal of Ecology, 99, 1382-1393. |
[45] | Wiegand T, Gunatilleke S, Gunatilleke N (2007 a). Species associations in a heterogeneous Sri Lankan dipterocarp forest. The American Naturalist, 170, E77-E95. |
[46] | Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007b). Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088-3102. |
[47] | Wright SJ (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14. |
[48] | Zang RG (臧润国), Ding Y (丁易), Zhang ZD (张志东), Deng FY (邓福英), Mao PL (毛培利) (2010). Ecological Foundation of Conservation and Restoration for the Major Functional Groups in Tropical Natural Forests on Hainan Island(海南岛热带天然林主要功能群保护与恢复的生态学基础). Science Press, Beijing. (in Chinese) |
[49] | Zhang LW, Mi XC, Shao HB, Ma KP (2011). Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant and Soil, 347, 211-220. |
[50] | Zhang ZH, Hu G, Zhu JD, Luo DH, Ni J (2010). Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 25, 1151-1160. |
/
〈 |
|
〉 |