论文

棉花冠层高光谱参数与叶片氮含量的定量关系

展开
  • 南京农业大学,江苏省信息农业高技术研究重点实验室,南京 210095
* E-mail: yanzhu@njau.edu.cn

收稿日期: 2006-01-20

  录用日期: 2007-04-23

  网络出版日期: 2007-09-30

基金资助

国家自然科学基金项目(30571092);国家自然科学基金项目(30400278);江苏省自然科学基金项目(BK205212);江苏省自然科学基金项目(BK2003079)

RELATIONSHIP BETWEEN CANOPY HYPERSPECTRA PARAMETER AND LEAF NITROGEN CONCENTRATION IN COTTON

Expand
  • Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2006-01-20

  Accepted date: 2007-04-23

  Online published: 2007-09-30

摘要

建立棉花(Gossypium hirsutum)氮素状况的光谱监测技术对于棉花营养诊断和长势估测具有重要意义。该研究利用冠层高光谱反射率及演变的多种高光谱参数,分析了不同施氮水平下不同棉花品种叶片氮含量与冠层反射光谱的定量关系,建立了棉花叶片氮含量的敏感光谱参数及预测方程。结果显示,棉花叶片氮含量和冠层高光谱反射率随不同施氮水平呈显著变化。棉花叶片氮含量的敏感光谱波段为600~700 nm的可见光波段和750~900 nm的近红外波段,且叶片氮含量与比值植被指数RVI [average (760~850), 700]有密切的定量关系,4个品种的平均决定系数在0.70左右。进一步分析表明,可以用统一的回归方程来描述不同品种、不同生育时期和不同氮素水平下棉花叶片氮含量随反射光谱参数的变化模式,从而为棉花氮素营养的监测诊断与精确施肥提供技术依据。

本文引用格式

吴华兵, 朱艳, 田永超, 姚霞, 刘晓军, 周治国, 曹卫星 . 棉花冠层高光谱参数与叶片氮含量的定量关系[J]. 植物生态学报, 2007 , 31(5) : 903 -909 . DOI: 10.17521/cjpe.2007.0114

Abstract

Aims It is very important to develop a nondestructive method for estimating nitrogen status and growth characters in cotton. We carried out two experiments to investigate the quantitative relationship between leaf nitrogen concentration and the canopy hyperspectral parameter in cotton.

Methods Based on the canopy hyperspectral reflectance and derived hyperspectral parameter, we investigated the quantitative relationship between leaf nitrogen concentration and canopy reflectance spectra in different cotton cultivars under different N rates and put forward the sensitive parameters and monitoring equations for leaf nitrogen concentration. Experiment 1 was conducted with two cultivars (‘Sumian 12’ and ‘Zhongmian 29’) and four N application levels (0, 150, 300 and 450 kg·hm-2) in 2004. Experiment 2 included two cultivars (‘Kemian 1’ and ‘Meimian 33B’) with three nitrogen levels (0, 240 and 480 kg·hm-2) in 2005.

Important findings Leaf nitrogen concentration and canopy hyperspectral reflectance significantly changed with levels of nitrogen fertilization. The sensitive bands of leaf nitrogen concentration were 600-700 nm of visible light and 750-900 nm of near infrared light, and the quantitative relationships between leaf nitrogen concentration and ratio vegetation index (RVI) [average (760-850), 700] of canopy were significant with an average R2 of 0.70 in four cultivars. An integrated regression equation could be used for describing the dynamic change pattern of leaf nitrogen concentration with hyperspectral parameters in different varieties, growing stages and nitrogen levels in cotton. These results provide a technical approach for monitoring plant nitrogen status and guiding precision nitrogen management in cotton production.

参考文献

[1] Baret F, Guyot G, Major DJ (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proceedings of the 12th Canadian Symposium on Remote Sensing and IGARSS'89. Geoscience and Remote Sensing Society of Institute of Electrical and Electronics Engineers. Vancouver, Canada, 3,1355-1358.
[2] Blackmer TM, Schepers JS, Meyer GE (1994). Remote sensing to detect nitrogen deficiency in corn. In: Robert PC, Rust RH, Larson WEeds. Proceedings of the Second International Conference on Site-specific Management for Agricultural Systems. ASA/CSSA/SSSA, Madison, WI,505-512.
[3] Blackmer TM, Schepers JS, Varvel GE, Walter-Shea EA (1996). Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal, 88,1-5.
[4] Bronson KF, Chua TT, Booker JD, Keeling JW, Lascano RJ (2003). In-season nitrogen status sensing in irrigated cotton.Ⅱ.Leaf nitrogen and biomass. Soil Science Society of America Journal, 67,1439-1448.
[5] Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80,76-87.
[6] Gitelson AA, Merzlyak MN (1996). Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148,494-500.
[7] Jiang GY (蒋桂英), Li SK (李少昆), Wang DW (王登伟), Chen YF (陈永芳), Lei YW (雷永雯) (2002). Studies and advances on application of remote sensing technique to cotton. Journal of Xinjiang Agricultural University (新疆农业大学学报), 25(3),76-79. (in Chinese with English abstract)
[8] Li Q (李强), Zhao W (赵伟) (2001). Date Processing and Application in MATLAB (MATLAB数据处理与应用). National Defense Industry Press, Beijing,1.
[9] Maas SJ (1997). Structure and reflectance of irrigated cotton leaf canopies. Agronomy Journal, 89,54-59.
[10] Ma YQ (马亚琴), Bao AM (包安明), Wang DW (王登伟), Sun L (孙莉), Huang CY (黄春燕), Feng XW (冯宪伟), Xiao CH (肖春华), Yang XJ (杨新军) (2003). Estimating of the total nitrogen content (TN) in cotton canopy by using hyperspectral remote sensing under water stress. Arid Land Geography (干旱区地理), 4,26-30. (in Chinese with English abstract)
[11] Mutanga O, Skidmore AK, van Wieren S (2003). Discriminating tropical grass ( Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS Journal of Photogrammetry and Remote Sensing, 57,263-272.
[12] Pearson RL, Miller DL (1972). Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee national grasslands, Colorado. In: Proceeding of the 8th International Symposium on Remote Sensing of Environment. Environment Research Institute of Michigan, Ann Arbor, Michigan, USA,1357-1381.
[13] Pe?uelas J, Filella I, Gamon JA (1995). Assessment of photosynthetic radiation-use-efficiency with spectral reflectance. New Phytologist, 131, 291-296.
[14] Stone ML, Solie JB, Raun WR, Whitney RW, Taylor SL, Ringer JD (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the American Society of Agricultural Engineers, 39,1623-1631.
[15] Thomas JR, Gausman HW (1977). Leaf reflectance vs. leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal, 69,799-802.
[16] Wang DW (王登伟), Li SK (李少昆), Tian QJ (田庆玖), Huang CY (黄春燕), Cao LP (曹连莆), Xiao CH (肖春华), Ma YQ (马亚琴), Yang XJ (杨新军) (2003). Estimating of main cultivation physiology parameters of cotton by using hyperspectral remote sensing. Scientia Agricultura Sinica (中国农业科学), 36,770-774. (in Chinese with English abstract)
[17] Wang RC (王人潮), Chen MZ (陈铭臻), Jiang HX (蒋亨显) (1993). Studies on agronomic mechanism of the rice yield estimation by remote sensing.Ⅰ. The rice reflectance characteristics of different nitrogen levels and the selection of their sensitive bands. Journal of Zhejiang University(Agriculture and Life Sciences) (浙江农业大学学报(农业与生命科学版)), 19(Suppl.),7-14. (in Chinese with English abstract)
[18] Xue LH (薛利红), Cao WX (曹卫星), Luo WH (罗卫红), Jiang D (姜东), Meng YL (孟亚利), Zhu Y (朱艳) (2003). Diagnosis of nitrogen status in rice leaves with the canopy spectral reflectance. Scientia Agricultura Sinica (中国农业科学), 36,807-812. (in Chinese with English abstract)
[19] Xue LH (薛利红), Cao WX (曹卫星), Luo WH (罗卫红), Zhang X (张宪) (2004). Correlation between leaf nitrogen status and canopy spectral characteristics in wheat. Acta Phytoecologica Sinica (植物生态学报), 28,172-177. (in Chinese with English abstract)
[20] Zhao DL, Reddy KR, Kakani VG, Read JJ, Koti S (2005). Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 97,89-98.
[21] Zhou QF (周启发), Wang RC (王人潮) (1993). A preliminary study on the relationship between the nitrogen levels and the spectral characteristics of early rice leaves. Journal of Zhejiang University(Agriculture and Life Sciences) (浙江农业大学学报(农业与生命科学版)), 19(Suppl.),40-46. (in Chinese with English abstract)
文章导航

/