综述

功能划分方法在树木细根生物量研究中的应用: 进展与评述

展开
  • 东北林业大学林学院, 哈尔滨 150040

网络出版日期: 2016-12-30

基金资助

黑龙江省自然科学基金(C2016004)和国家自然科学基金(31100470)

Applications of functional classification methods for tree fine root biomass estimation: Advancements and synthesis

Expand
  • School of Forestry, Northeast Forestry University, Harbin 150040, China

Online published: 2016-12-30

摘要

树木细根具有高度的结构和功能的异质性。近20年来, 人们逐渐认识到采用某一直径阈值来定义细根并开展研究的方法(即直径法)不能准确地描述相关的生理学和生态学过程。随着越来越多的研究证实根系功能与其分支等级密切相关, 根序划分的方法(即根序法)在根系研究中得到更多的应用。但是, 采用根序法测定相关功能属性需耗费大量的人力和时间。最近, 有研究者在结合直径法和根序法优点的基础上提出了功能划分的方法。该方法将传统的细根区分为吸收根和运输根, 在充分考虑根系结构和功能联系的同时, 又能兼顾研究工作的效率和结果间的可比性, 特别适用于根系生物量与周转的研究。采用功能划分方法来研究根系生物量(包括其他功能属性)是一个较新的观点, 研究结果的规律性和存在的主要问题仍有待总结。该文作者通过查阅近年来的相关研究报告发现吸收根与运输根生物量在树种间存在较大的差异, 目前对吸收根生物量在全球尺度上的变异格局并不清楚, 吸收根与运输根对细根生物量周转的相对贡献有待探究, 运输根在界定上存在着很大的挑战性。该文最后讨论了在根系研究中应用功能划分方法的优势与不足, 并提出了建议。

本文引用格式

谷加存, 王东男, 夏秀雪, 王韶仲 . 功能划分方法在树木细根生物量研究中的应用: 进展与评述[J]. 植物生态学报, 2016 , 40(12) : 1344 -1351 . DOI: 10.17521/cjpe.2016.0167

Abstract

The morphology of fine root branching of woody plants is highly variable in their forms and functions. In the past two decades, researchers have increasingly recognized that the root-diameter-based method, using an arbitrary size of root diameter, failed to precisely characterize the physiological and ecological processes involved in finest roots. The number of publications using root-order-based approaches has increased regardless the fact that root trait-measurements based on root order are time-consuming and labor-intensive. A new approach—root functional classification method—was proposed and had been applied in the literature. The functional classification of fine roots separates roots of < 2 mm to absorptive and transport pools, making it more feasible for studies on root biomass and turnover. This new concept redefines fine root guild and has great potentials for future studies. Our literature review of the topic indicates that less is known about the inter-specific differences in estimates of biomass of absorptive and/or transport roots, with a large variation of absorptive roots on global scale. In addition, our review emphasizes the importance in: a) precision estimating of the absorptive biomass of fine roots, and b) proper definition of the range of the transport roots within and among forest ecosystems. Finally, after compare the strengths and weaknesses of the functional classification method, we propose several specific suggestions to improve the applications of this approach.

参考文献

1 Campbell BD, Grime JP, Mackey JML (1991). A trade-off between scale and precision in resource foraging.Oecologia, 87, 532-538.
2 Chen HY, Brassard BW (2013). Intrinsic and extrinsic controls of fine root life span.Critical Reviews in Plant Sciences ,32, 151-161.
3 Dong XY, Wang HF, Gu JC, Wang Y, Wang ZQ (2015). Root morphology, anatomy and chemistry of nine fern species (pteridophyta) in a temperate forest.Plant and Soil, 393, 215-227.
4 Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide1 RT (2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.New Phytologist, 208, 114-24.
5 Espeleta JF, West JB, Donovan LA (2009). Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient.Ecology, 90, 1773-1787.
6 Fan PP, Guo DL (2010). Slow decomposition of lower order roots: A key mechanism of root carbon and nutrient retention in the soil.Oecologia, 163, 509-515.
7 Finér L, Helimisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce(Picea abies 141, 394-405.
8 Finér L, Ohashi M, Noguchi K, Hirano Y (2011a). Factors causing variation in fine root biomass in forest ecosystems.Forest Ecology and Management, 261, 265-277.
9 Finér L, Ohashi M, Noguchi K, Hirano Y (2011b). Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics.Forest Ecology and Management, 262, 2008-2023.
10 Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu WD, Jackson GB, Onipchenko VG, Soudzilovskaia NA, Tao JP, Conelissen HC (2013). Linking litter decomposi- tion of above- and below-ground organs to plant-soil feed- backs worldwide.Journal of Ecology ,101, 943-952.
11 Gaudinski JB, Torn MS, Riley WJ, Dawson TE, Joslin JD, Majdi H (2010). Measuring and modeling the spectrum of fine-root turnover times in three forests using isotopes, minirhizotrons, and the Radix model.Global Biogeo- chemical Cycles, 24, 1480-1493.
12 Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems.New Phytologist ,147, 13-31.
13 Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011). Decomposi- tion of the finest root branching orders: Linking carbon and nutrient dynamics belowground to fine root function and structure.Ecological Monographs, 81, 89-102.
14 Gu JC, Sun Y, Yu SQ, Wang ZQ, Guo DL (2011). Influence of root structure on fine root survivorship: An analysis of 18 tree species using a minirhizotron method.Ecological Research, 26, 755-762.
15 Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ (2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species.Tree Physiology ,34, 415-425.
16 Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008a). Fine root heterogeneity by branch order: Exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods.New Phytologist, 177, 443-456.
17 Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
18 Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008b). Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: Root branch order predominates.Journal of Ecology ,96, 737-745.
19 Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008c). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species.New Phytologist, 180, 673-683.
20 He JS, Wang ZQ, Fang JY (2004). Issues and prospects of belowground ecology with special reference to global climate change.Chinese Science Bulletin, 49, 1891-1899.
21 Helmisaari HS, Ostonen I, Lõhmus K, Derome J, Lindroos AJ, Merilä P, Nöjd P (2009). Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.Tree Physiology, 29, 445-456.
22 Hertel D, Strecker T, Müller-Haubold H, Leuschner C, (2013). Fine root biomass and dynamics in beech forests across a precipitation gradient—Is optimal resource partitioning theory applicable to water-limited mature trees? Journal of Ecology, 101, 1183-1200.
23 Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
24 Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006). Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest.New Phytologist, 172, 523-535.
25 Kong DL, Li L, Ma CE, Chen XY, Zeng H, Guo DL (2014). Leading dimensions of root trait variation in subtropical forests.New Phytologist, 203, 863-872.
26 Kong DL, Ma CE (2014). Acquisition of ephemeral module in roots: A new view and test.Scientific Reports, 4, 1-4.
27 Kou L, Guo DL, Yang H, Gao WL, Li SG (2015). Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China.Plant and Soil, 391, 207-218.
28 Liao YC, McCormack ML, Fan HB, Wang HM, Wu LP, Tu J, Liu WF, Guo DL (2014). Relation of fine root distribution to soil C in aCunninghamia lanceolata plantation in subtropical China. Plant and Soil ,381, 225-234.
29 Liu B, He JX, Zeng FJ, Lei JQ, Arndt SK (2016). Life span and structure of ephemeral root modules of different functional groups from a desert system.New Phytologist, 211, 103-112.
30 Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL (2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.New Phytologist ,208, 125-136.
31 Liu JL (2008). Root Structure of Five Tree Species in Northeast China. Master degree dissertation, Northeast Forestry University, Harbin. [刘金梁(2008). 东北5个树种根系结构研究. 硕士学位论文, 东北林业大学, 哈尔滨.]
32 Liu YK, Fan C, Li XW, Ling YH, Zhou YG, Feng MS, Huang CD (2012). Effects of thinning on fine root biomass and carbon storage of subalpine Picea asperata plantation in Western Sichuan Province, China. Chinese Journal of Plant Ecology, 36, 645-654.(in Chinese with English abstract) [刘运科, 范川, 李贤伟, 凌银花, 周义贵, 冯茂松, 黄从德 (2012). 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响. 植物生态学报, 36, 645-654.]
33 Long YQ, Kong DL, Chen ZX, Zeng H (2013). Variation of the linkage of root function with root branch order.PLOS ONE ,8, e57153. doi: 10.1371/journal.pone.0057153.
34 Lynch DJ, Matamala R, Iversen CM, Norby RJ, Gonzalez- Meler MA (2013). Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots.New Phytologist, 199, 420-430.
35 Majdi H, Pregitzer K, Morén AS, Nylund JE, Ågren GI (2005). Measuring fine root turnover in forest ecosystems.Plant and Soil, 276, 1-8.
36 Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forestNPP and soil C sequestration potential. Science ,302, 1385-1387.
37 McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees.New Phytologist,195, 823-831.
38 McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.New Phytologist, 207, 505-518.
39 McNickle GG, St. Clair CC, Cahill Jr. JF (2009). Focusing the metaphor: Plant root foraging behaviour.Trends in Ecology and Evolution, 24, 419-426.
40 Meier I, Leuschner C (2008). Belowground drought response of European beech: Fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient.Global Change Biology ,14, 2081-2095.
41 Norby RJ, Jackson RB (2000). Root dynamics and global change: Seeking an ecosystem perspective.New Phyt- ologist, 147, 3-12.
42 Ostonen I, Helmisaari HS, Borken W, Tedersoo L, kukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Löhmus K (2011). Fine root foraging strategies in Norway spruce forests across a European climate gradient.Global Change Biology, 17, 3620-3632.
43 Parton WJ, Hanson PJ, Swanston C, Torn M, Trumbore SE, Riley W, Kelly R (2010). ForCent model development and testing using the enriched background isotope study experiment.Journal of Geophysical Research-Biogeo- sciences, 115, 5613-5618.
44 Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
45 Silver WL, Miya RK (2001). Global patterns in root decomposition: Comparisons of climate and litter quality effects.Oecologia, 129, 407-419.
46 Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008). Irreconcilable differences: Fine-root life spans and
47 soil carbon persistence.Science, 319, 456.
48 Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008). Root anatomy, morphology, and longevity among root orders inVaccinium corymbosum(Ericaceae). American Journal of Botany, 95, 1506-1514.
49 Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2015). Aggregated and comple- mentary: Symmetric proliferation, overyielding, and mass effects explain fine-root biomass in soil patches in a diverse temperate deciduous forest landscape. New Phytologist ,205, 731-742.
50 Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjor- nsen H (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species.Plant and Soil, 187, 159-219.
51 Wang ZQ, Guo DL, Wang XR, Gu JC, Mei L (2006). Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species.Plant and Soil, 288, 155-171.
52 Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a mul- tidimensional root trait framework: A tree root review.New Phytologist ,211, 1159-1169. doi: 10.1111/nph. 14003.
53 Wei X, Liu Y, Chen HB (2008). Anatomical and functional heterogeneity among different root orders ofPhellod- endron amurense. Journal of Plant Ecology (Chinese Version), 32, 1238-1247.(in Chinese with English abstract) [卫星, 刘颖, 陈海波 (2008). 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32, 1238-1247.]
54 Wells CE, Glenn DM, Eissenstat DM (2002). Changes in the risk of fine-root mortality with age: A case study in peach,Prunus persica(Rosaceae). American Journal of Botany, 89, 79-87.
55 Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees.Ecoogical Monographs, 76, 381-397.
56 Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root modules inFraxinus mandshurica. New Phytologist ,188, 1065-1074.
57 Yuan ZY, Chen Han YH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses.Critical Reviews in Plant Sciences, 29, 204-221.
58 Zadworny M, McCormack ML, Mucha J, Reich PB, Oleksyn J (2016). Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient.New Phytologist ,212, 389-399.
文章导航

/