研究论文

青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子

展开
  • 1中国科学院西北高原生物研究所, 西宁 810001
    2青海省气象科学研究所, 西宁 810001
    3青海省农林科学院生物技术研究所, 西宁 810016
    4青海省海北牧业气象试验站, 青海海北 810200
    5中国科学院高原生物适应与进化重点实验室, 西宁 810001
* E-mail: ynli@nwipb.cas.cn

收稿日期: 2011-10-25

  录用日期: 2012-01-12

  网络出版日期: 2012-02-28

CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China

Expand
  • 1Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
    2Institute of Qinghai Meteorological Science Research, Xining 810001, China
    3Institute of Biotechnology of Qinghai Academy of Agriculture and Forestry, Xining 810016, China
    4Haibei Animal Husbandry Meteorological Experimental Station of Qinghai Province, Haibei, Qinghai 810200, China
    5Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China

Received date: 2011-10-25

  Accepted date: 2012-01-12

  Online published: 2012-02-28

摘要

草甸草原是青藏高原的重要植被类型, 与其他植被类型相比, 其碳交换过程和驱动机理的研究仍较薄弱。利用青海湖东北岸草甸草原的涡度相关系统观测的连续数据(2010年7月1日-2011年6月30日), 分析了草甸草原CO2通量特征及其驱动因子。结果表明: 草甸草原净生态系统CO2交换量(NEE)在植物生长季的5-9月, 其日变化主要受控于光合光量子通量密度(PPFD); 而非生长季(10月21日-4月19日)和生长季初(4月下旬)、末期(10月中上旬) NEE的日变化主要受气温(Ta)的影响。CO2日最大吸收值和释放值分别出现在7月1日(11.37 g CO2∙m-2∙d-1)和10月21日(4.04 g CO2∙m-2∙d-1)。逐日NEE主要受控于Ta, 两者关系可用指数线性(explinear)方程表示(R2= 0.54, p < 0.01)。叶面积指数(LAI)和增强型植被指数(EVI)对逐日NEE的影响表现为渐近饱和型, LAITa交互作用明显(p < 0.05), EVI的主效应强烈(p < 0.001)。生态系统的呼吸熵(Q10)为2.42, 总呼吸(Reco)约占总初级生产力(GPP)的74%。生长季适度的昼夜温差(<14.8 ℃)有利于系统的碳蓄积。研究时段该草甸草原作为碳汇从大气吸收271.31 g CO2∙ m -2

本文引用格式

张法伟, 李英年, 曹广民, 李凤霞, 叶广继, 刘吉宏, 魏永林, 赵新全 . 青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子[J]. 植物生态学报, 2012 , 36(3) : 187 -198 . DOI: 10.3724/SP.J.1258.2012.00187

Abstract

Aims Meadow grassland is a dominant vegetation type on the Qinghai-Tibetan Plateau, but its mechanisms controlling the exchange of CO2 across a spectrum of time scales and carbon budget remain unclear. Our objective was to investigate the main drivers of ecosystem carbon dynamics and understand the potential response to future climate warming.
Methods We used the eddy covariance method for continuously measuring net ecosystem CO2 exchange (NEE) and environmental factors over meadow grassland on the northern shore of Qinghai Lake from July 1, 2010 to June 30, 2011.
Important findings Diurnal changes of NEE were controlled by photosynthetic photon flux density (PPFD) during the middle growing season (May to September), and air temperature (Ta) was the determining factor on diurnal NEE during other periods. The maximum daily CO2 uptake and release rate were 11.37 g CO2∙m-2∙d-1 on July 1 and 4.04 g CO2∙m-2∙d-1 on October 21, respectively. Ta was the primary environmental factor related to daily NEE, and the correlation was described by an exponential-linear equation (R 2= 0.54, p < 0.01). A significant asymptotical response of daily NEE with increasing leaf area index (LAI) and enhanced vegetation index (EVI) was observed. The interaction effect of LAI and Ta was significant (p < 0.05), while main effect of EVI versus Ta was more important (p < 0.001). Respiration quotient (Q10) was 2.42 and ecosystem total respiration (Reco) consumed 74% of gross primary production (GPP). The proper magnitude of diurnal temperature range (<14.8 ℃) could be propitious to ecosystem carbon sequestration. The meadow grassland acted as carbon sink and absorbed 271.31 g CO2∙m -2from the atmosphere during the study period.

参考文献

[1] Adams JM, Faure H, Faure-Denard L, Mcglade JM, Woodward FI (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348, 711-714.
[2] Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grüwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69.
[3] Feng S (冯松), Tang MC (汤懋苍), Wang DM (王冬梅) (1998). New evidence for the Qinghai-Tibetan Plateau as promoter region of climate change in our country. Chinese Science Bulletin (科学通报), 43, 633-636. (in Chinese)
[4] Fu YL, Zheng ZM, Yu GR, Hu ZM, Sun XM, Shi PL, Wang YS, Zhao XQ (2009). Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 6, 2879-2893.
[5] Gu S, Tang YH, Du MY, Kato T, Li YN, Cui XY, Zhao XQ (2003). Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai- Tibetan Plateau. Journal of Geophysical Research, 108, 4670-4679.
[6] Hao YB, Wang YF, Sun XM, Huang XZ, Cui XY, Niu HS, Zhang YH, Yu GR (2006). Seasonal variation in carbon exchange and its ecological analysis over Leymus chinensis steppe in Inner Mongolia. Science in China Series D-Earth Sciences, 49, 186-195.
[7] Kato T, Tang YH, Gu S, Cui XY, Hirota M, Du MY, Li YN, Zhao XQ, Oikawa T (2004). Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 124, 121-134.
[8] Kato T, Tang YH, Gu S, Hirota M, Du MY, Li YN, Zhao XQ (2006). Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 12, 1285-1298.
[9] K?rner C (1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer-Verlag, Berlin .
[10] Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97-120.
[11] Li C (李春), He HL (何洪林), Liu M (刘敏), Su W (苏文), Fu YL (伏玉玲), Zhang LM (张雷明), Wen XF (温学发), Yu GR (于贵瑞) (2008). The design and application of CO2 flux data processing system at ChinaFluX. Geo-Informa- tion Science (地球信息科学), 10, 557-565. (in Chinese with English abstract)
[12] Li YN, Sun XM, Zhao XQ, Zhao L, Xu SX, Gu S, Zhang FW, Yu GR (2006). Seasonal variations and mechanism for environmental control of NEE of CO2 concerning the Potentilla fruticosa in alpine shrub meadow of Qinghai-Tibet Plateau. Science in China Series D-Earth Sciences, 49, 174-185.
[13] Li ZQ, Yu GR, Wen XF, Zhang LM, Ren CY, Fu YL (2005). Energy balance closure at ChinaFLUX sites. Science in China Series D-Earth Sciences, 48, 51-62.
[14] Mcfadden JP, Eugster W, Chapin FS (2003). A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology, 84, 2762-2776.
[15] Ni J (2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
[16] Novick KA, Stoy PC, Katul GG, Ellsworth DS, Siqueira MBS, Juang J, Oren R (2004). Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia, 138, 259-274.
[17] Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
[18] Qi YC (齐玉春), Dong YS (董云社), Geng YB (耿元波), Yang XH (杨小红), Geng HL (耿会立) (2003). The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography (地理科学进展), 22, 342-352. (in Chinese with English abstract)
[19] Saito M, Kato T, Tang YH (2009). Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 15, 221-228.
[20] Shi PL, Sun XM, Xu LL, Zhang XZ, He YT, Zhang DQ, Yu GR (2006). Net ecosystem CO2 exchange and controlling factors in a steppe― Kobresia meadow on the Tibetan Plateau. Science in China Series D-Earth Sciences, 49, 207-218.
[21] Shi SB (师生波), Han F (韩发), Li HY (李红彦) (2001). Midday depression of photosynthesis of Gentiana straminea and Saussurea superba in alpine Kobresia humilis meadow. Acta Phytophysiologica Sinica (植物生理学报), 27, 123-128. (in Chinese with English abstract)
[22] Webb EK, Pearman GL, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100.
[23] Wei YL (魏永林), Xu CP (许存平), Zhang SK (张胜魁), Song ML (宋明理) (2008). Effects of climatic changes on biomass and eco-environments of natural grassland in Haibei region of Qinghai Province. Pratacultural Science (草业科学), 25(3), 12-17. (in Chinese with English abstract)
[24] Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243.
[25] Wohlfahrt G, Anderson-Dunn M, Bahn M, Balzarolo M, Berninger F, Campbell C, Carrara A, Cescatti A, Christensen T, Dore S, Eugster W, Friborg T, Furger M, Gianelle D, Gimeno C, Hargreaves K, Hari P, Haslwanter A, Johansson T, Marcolla B, Milford C, Nagy Z, Nemitz E, Rogiers N, Sanz M, Siegwolf R, Susiluoto S, Sutton M, Tuba Z, Ugolini F, Valentini R, Zorer R, Cernusca A (2008). Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of european mountain grassland ecosystems. Ecosystems, 11, 1338-1351.
[26] Wu LB (吴力博), Gu S (古松), Zhao L (赵亮), Xu SX (徐世晓), Zhou HK (周华坤), Feng C (冯超), Xu WX (徐维新), Li YN (李英年), Zhao XQ (赵新全), Tang YH (唐艳鸿) (2010). Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chinese Journal of Plant Ecology (植物生态学报), 34, 770-780. (in Chinese with English abstract)
[27] Yu GR (于贵瑞), Sun XM (孙晓敏) (2006). Principles of Flux Measurement in Terrestrial Ecosystems (陆地生态系统通量观测的原理与方法). Higher Education Press, Beijing. (in Chinese)
[28] Zhang FW (张法伟), Li HQ (李红琴), Li YN (李英年), Li YK (李以康), Lin L (林丽) (2009). Periodic fluctuation features of air temperature, precipitation, and aboveground net primary production of alpine meadow ecosystem on Qinghai-Tibetan Plateau. Chinese Journal of Applied Ecology (应用生态学报), 20, 525-530. (in Chinese with English abstract)
[29] Zhang FW, Li HQ, Li YN, Zhao L (2007). “Turning point air temperature” for alpine meadow ecosystem CO2 exchange on the Qinghai-Tibetan Plateau. Pratacultural Science (草业科学), 24(9), 20-28.
[30] Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Fu YL, Li QK, Li ZQ, Liu YF, Guan DX, Yan JH (2006). Seasonal variations of ecosystem apparent quantum yield a) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology, 137, 176-187.
[31] Zhao L (赵亮), Gu S (古松), Zhou HK (周华坤), Xu SX (徐世晓), Zhao XQ (赵新全), Li YN (李英年) (2008). CO2 fluxes of artificial grassland in the source region of the Three Rivers on the Qinghai-Tibetan Plateau, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 544-554. (in Chinese with English abstract)
[32] Zhao L, Li YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ (2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai- Tibetan plateau. Global Change Biology, 12, 1940-1953.
[33] Zhou XM (周兴民), Wang ZB (王质彬), Du Q (杜庆) (1987). Qinghai Vegetation (青海植被). Qinghai People Press, Xinjing. (in Chinese)
[34] Zhu BW (朱宝文), Song ML (宋明理), Xu CP (许存平), Jiang CY (姜朝阳), Ma ZT (马宗泰), Zhou HK (周华坤), Xu YX (徐有绪) (2007). Characteristics of changes of micro- meteorology in surface layer of grassland in regions around Qinghai Lake. Chinese Journal of Agrometeorology (中国农业气象), 28, 389-392. (in Chinese with English abstract)
文章导航

/