研究论文

青藏高原20种灌木抗旱形态和生理特征

展开
  • 1华南农业大学林学院, 广州 510642
    2中国林业科学研究院林业研究所, 国家林业局林木培育重点实验室, 北京 100091
    3甘肃省小陇山林业科学研究所, 甘肃天水 741022
* E-mail: qiuquan89@163.com

收稿日期: 2014-07-16

  录用日期: 2014-03-24

  网络出版日期: 2014-06-10

基金资助

林业公益性行业科研专项(200904033);农业科技成果转化资金项目(2011GB24320010)

Morphological traits and physiological characteristics in drought tolerance in 20 shrub species on the Qinghai-Xizang Plateau

Expand
  • 1College of Forestry, South China Agricultural University, Guangzhou 510642, China
    2Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100091, China
    3Xiaolongshan Forestry Science and Technology Research Institute, Tianshui, Gansu 741022, China

Received date: 2014-07-16

  Accepted date: 2014-03-24

  Online published: 2014-06-10

摘要

该研究以青藏高原地区采集的柠条锦鸡儿(Caragana korshinskii)等20种灌木树种为研究对象, 将其二年生幼苗移栽至苗圃培育, 通过田间试验测定三年生苗木生物量根冠比(RSR)、叶片蒸腾速率(Tr)、瞬时水分利用效率(WUEi)、稳定碳同位素组成(δ13C)、叶片解剖结构特征和根系特征(长度、表面积、体积和根尖数)指标, 综合分析其抗旱性能差异, 为青藏高原干旱地区灌木树种抗逆性(耐旱)评价指标的建立、优良抗逆性树种的筛选及各种灌木树种的合理立地配置提供必要的理论依据。研究结果表明: 所选20种灌木为适应长期的干旱逆境, 不同植物种具有不同的抗旱策略。研究中将灌木抗旱机制划分为6个类型: 根系特征抗旱型、叶片旱生结构型、叶片旱生形态型、生物量分配型、节水型、高水分利用效率型。不同属和同属不同种灌木抗旱性有所差异, 沙棘属(Hippophae)植物总体抗旱性不佳, 而金露梅(Potentilla fruticosa)、豪猪刺(Berberis julianae)、树锦鸡儿(Caragana arborescens)、绣线菊(Spiraea salicifolia)和蒙古沙棘(Hippophae rhamnoides ssp. mongolica)综合抗旱性能较好, 总体上属于根系和叶片抗旱特征明显、低耗水、高生产效率的抗旱性强树种, 可以在青藏高原地区植被恢复树种筛选时优先考虑。根系特征值之间存在极显著正相关关系, 叶片结构特征指标之间也存在不同程度的相关关系, 但RSR、TrWUEiδ13C与根系特征值和叶片解剖结构特征指标之间总体上相关性不显著。主成分分析结果显示灌木全根和细根的长度、表面积、体积、根尖数和叶片栅栏组织厚度、海绵组织厚度、瞬时水分利用效率因子载荷较高, 能较好地反映青藏高原灌木树种抗旱性差异相关信息。此外, 灌木树种原产地与抗旱性也存在一定的联系, 青海西宁地区采集的灌木树种总体抗旱性优于甘肃天水和西藏拉萨地区。

本文引用格式

邱权,潘昕,李吉跃,王军辉,马建伟,杜坤 . 青藏高原20种灌木抗旱形态和生理特征[J]. 植物生态学报, 2014 , 38(6) : 562 -575 . DOI: 10.3724/SP.J.1258.2014.00052

Abstract

Aims Providing indispensably theoretical evidence for establishing indices of evaluation on drought tolerance in shrubs, and screening for tree species that are drought tolerant for afforestation in arid regions or for matching their characteristics with suitable habitat conditions are the key to vegetation restoration in the Qinghai-Xizang Plateau. However, these issues are not adequately addressed in recent research due to lack of systematic methods. Therefore, our objective was to make a comprehensive evaluation on drought tolerance in 20 shrub species collected from different areas in Qinghai-Xizang Plateau, and to study their underlying mechanisms in drought tolerance.
Methods We made measurements on variables depicting root characteristics, including the root length (TRL), surface area (TRSA), volume (TRV), and tips number (TRTN) of all roots, the root length (FRL), surface area (FRSA), volume (FRV), and tips number (FRTN) of fine roots (d≤2 mm), and derived plant characteristic indices including thickness of cuticle (CT), thickness of palisade tissue (TPT), thickness of spongy tissue (TST), TPT/TST, thickness of leaf (LT), palisable tissue cell density, and tissue structural tense ratio (CTR = TPT/LT × 100%) and spongy tissue loosened ratio (SR = TST/LT × 100%) of leaf anatomical structure, root to shoot ratio (RSR), leaf transpiration rate (Tr), instantaneous water use efficiency (WUEi), and carbon isotopic composition (δ13C) of the 20 shrub species through field experiments. Correlation analysis and principal component analysis were performed on the 19 variables and indices.
Important findings Different shrubs had different mechanisms of drought tolerance. In this study, the character- istics of drought tolerance were mainly categorized into 6 types, involving modifications of (1) root systems, (2) leaf anatomical structure, (3) leaf pattern, and (4) biomass allocation, or via (5) low water-consumption and (6) high WUEi. Different genera or different tree species within the same genus clearly differed in drought tolerance. The species of the genus Hippophae were relatively poorly tolerant to drought, whereas several shrubs including Potentilla fruticosa, Berberis julianae, Caragana arborescens, Spiraea salicifolia and Hippophae rhamnoides ssp. mongolica occurred to be more drought tolerant than other shrub species investigated in this study. On the other hand, there were highly significant correlations among the characteristics of root systems and among characteristics of leaf anatomical structure. The results of principal component analysis on 19 variables and indices showed that TRL, TRSA, TRV, TRTN, FRL, FRSA, FRV, FRTN, CT, TPT, TST and WUEi could be effective indicators of drought tolerance of shrubs in the Qinghai-Xizang Plateau. In addition, the drought tolerance of shrubs had a close connection with their origin of collections; the shrubs collected from Xining prefecture in Qinghai Province were more drought tolerant than those from Tianshui Prefecture in Gansu and Lasa Prefecture in Xizang.

参考文献

[1] Chen MT, Zhao Z (2011). Effects of drought on root characteristics and mass allocation in each part of seedlings of four tree species. Journal of Beijing Forestry University, 33(1), 16-22. (in Chinese with English abstract)
[1] [ 陈明涛, 赵忠 (2011). 干旱对4种苗木根系特征及各部分物质分配的影响. 北京林业大学学报, 33(1), 16-22.]
[2] Chen SP, Bai YF, Han XG, An JL, Guo FC (2004). Variations in foliar carbon isotope composition and adaptive strategies of Carex korshinskyi along a soil moisture gradient. Acta Phytoecologica Sinica, 28, 515-522. (in Chinese with English abstract)
[2] [ 陈世苹, 白永飞, 韩兴国, 安吉林, 郭富存 (2004). 沿土壤水分梯度黄囊薹草碳同位素组成及其适应策略的变化. 植物生态学报, 28, 515-522.]
[3] Chen T, Feng HY, Xu SJ, Qiang WY, An LZ (2002). Stable carbon isotope composition of desert plant leaves and water-use efficiency. Journal of Desert Research, 22, 288-291. (in Chinese with English abstract)
[3] [ 陈拓, 冯虎元, 徐世建, 强维亚, 安黎哲 (2002). 荒漠植物叶片碳同位素组成及其水分利用效率. 中国沙漠, 22, 288-291.]
[4] Chen XY, Gao ZH, Luo YP (2005). Relationship between root and shoot of plants. Plant Physiology Communications, 41, 555-561. (in Chinese with English abstract)
[4] [ 陈晓远, 高志红, 罗远培 (2005). 植物根冠关系. 植物生理学通讯, 41, 555-561.]
[5] Christmann A, Weiler EW, Steudle E, Grill E (2007). A hydraulic signal in root-to-shoot signaling of water shortage. The Plant Journal, 52, 167-174.
[6] Dodd IC (2005). Root-to-shoot signaling: assessing the roles of “up” in the up and down world of long-distance signaling in planta. Plant and Soil, 274, 251-270.
[7] Dong XJ, Zhang XS (2001). Some observations of the adaptations of sandy shrubs to the arid environment in the Mu Us sandland: leaf water relations and anatomic features. Journal of Arid Environments, 48, 41-48.
[8] Duan AG, Zhang JG, He CY, Zhang JP, Zhang SG (2008). Studies on transpiration of seedlings of the main tree species under the condition of drought stress in the dry hot river valleys of the Jinsha River. Forestry Research, 21, 436-445. (in Chinese with English abstract)
[8] [ 段爱国, 张建国, 何彩云, 张俊佩, 张守攻 (2008). 干旱胁迫下金沙江干热河谷主要造林树种盆植苗的蒸腾耗水特性. 林业科学研究, 21, 436-445.]
[9] Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503-537.
[10] Gao ZH, Chen XY (2009). Effects of polyethylene glycol induced water stress on root growth of rice. Acta Agriculturae Boreali-Sinica, 24(2), 128-133. (in Chinese with English abstract)
[10] [ 高志红, 陈晓远 (2009). 聚乙二醇造成的水分胁迫对水稻根系生长的影响. 华北农学报, 24(2), 128-133.]
[11] Guo LS, Tian YL (1992). Transpiration rate of coniferous and broadleaf young trees as a function of water potential of their leaves and of environmental factors. Acta Ecologica Sinica, 12, 47-52. (in Chinese with English abstract)
[11] [ 郭连生, 田有亮 (1992). 9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究. 生态学报, 12, 47-52.]
[12] Guo WH, Li B, Zhang XS, Wang RQ (2007). The impact of water stress on transpiration indices in Hippophae rhamnoides and Caragana intermedia. Acta Ecologica Sinica, 27, 4132-4140. (in Chinese with English abstract)
[12] [ 郭卫华, 李波, 张新时, 王仁卿 (2007). 水分胁迫对沙棘(Hippophae rhamnoides)和中间锦鸡儿(Caragana intermedia)蒸腾作用影响的比较. 生态学报, 27, 4132-4140.]
[13] Kong YJ, Sun MG, Hu XJ, Miao HX (2006). Effects of drought stress on several physiological indexes of Cotinus coggygria seedlings. Journal of Central South Forestry, 26(4), 42-46. (in Chinese with English abstract)
[13] [ 孔艳菊, 孙明高, 胡学俭, 苗海霞 (2006). 干旱胁迫对黄栌幼苗几个生理指标的影响. 中南林学院学报, 26(4), 42-46.]
[14] Li AP, Wang XJ, Yang XY, Zhang L (2010). Evaluation of drought resistance capacity of desert shrubs in Hobq Desert based on characteristics of leaf anatomical structure. Journal of Desert Research, 30, 1405-1410. (in Chinese with English abstract)
[14] [ 李爱平, 王晓江, 杨小玉, 张雷 (2010). 库布齐沙漠几种沙生灌木叶解剖结构耐旱特征研究. 中国沙漠, 30, 1405-1410.]
[15] Li DS, Liu F, Ma YG (2010). Study on relationship on root system and drought resistance of corn. Rain Fed Crops, 30(3), 195-197. (in Chinese with English abstract)
[15] [ 李德顺, 刘芳, 马永光 (2010). 玉米根系与抗旱性关系研究. 杂粮作物, 30(3), 195-197.]
[16] Li JY (1991). Mechanisms of drought tolerance in plants. Journal of Beijing Forestry University, 13(3), 92-100. (in Chinese with English abstract)
[16] [ 李吉跃 (1991). 植物耐旱性及其机理. 北京林业大学学报, 13(3), 92-100.]
[17] Li JY, Zhou P, Zhao LJ (2002). Influence of drought stress on transpiring water-consumption of seedlings. Acta Ecologica Sinica, 22, 1380-1386. (in Chinese with English abstract)
[17] [ 李吉跃, 周平, 招礼军 (2002). 干旱胁迫对苗木蒸腾耗水的影响. 生态学报, 22, 1380-1386.]
[18] Li LH, Li SQ, Zhai JH, Shi JT (2001). Review of the relationship between wheat roots and water stress. Acta Botanica Boreali-Occidentalia Sinica, 21, 1-7. (in Chinese with English abstract)
[18] [ 李鲁华, 李世清, 翟军海, 史俊通 (2001). 小麦根系与土壤水分胁迫关系的研究进展. 西北植物学报, 21, 1-7.]
[19] Liu JC, Zhong ZC (2009). Influence of water stress and re-watering on the root growth of Cupressus funebris Endl. seedlings in the limestone area. Acta Ecologica Sinica, 29, 6439-6445. (in Chinese with English abstract)
[19] [ 刘锦春, 钟章成 (2009). 水分胁迫和复水对石灰岩地区柏木幼苗根系生长的影响. 生态学报, 29, 6439-6445.]
[20] Pu WF, Li GL, Zhang M, Wang D, Wang LP, Ji ZB, Dai B, Qiao YK (2010). Effects of drought stress on root characteristics and physiological indexes of Glycine soja and Glycine max. Soybean Science, 29, 615-622. (in Chinese with English abstract)
[20] [ 蒲伟凤, 李桂兰, 张敏, 王丹, 王卢平, 纪展波, 代波, 乔亚科 (2010). 干旱胁迫对野生和栽培大豆根系特征及生理指标的影响. 大豆科学, 29, 615-622.]
[21] Qiu Q, Pan X, He Q, Li JY, Su Y, Lin W (2012). Comparison of daily variations in photosynthesis and water-consumption of seedlings in vigorous growth period of three tree species from South China. Journal of South China Agricultural University, 33, 524-528. (in Chinese with English abstract)
[21] [ 邱权, 潘昕, 何茜, 李吉跃, 苏艳, 林雯 (2012). 华南地区3种苗木生长旺盛时期光合特性及蒸腾耗水日变化规律的比较. 华南农业大学学报(自然科学版), 33, 524-528.]
[22] Qu CM, Han XG, Su B, Huang JH, Jiang GM (2001). The characteristics of foliar δ13C values of plants and plant water use efficiency indicated by δ13C values in two fragmented rainforests in Xishuangbanna, Yunnan. Acta Botanica Sinica, 43, 186-192. (in Chinese with English abstract)
[22] [ 渠春梅, 韩兴国, 苏波, 黄建辉, 蒋高明 (2001). 云南西双版纳片段化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指标. 植物学报, 43, 186-192.]
[23] Ren SJ, Yu GR (2011). Carbon isotope composition (δ13C) of C3 plants and water use efficiency in China. Chinese Journal of Plant Ecology, 35, 119-124. (in Chinese with English abstract)
[23] [ 任书杰, 于贵瑞 (2011). 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率. 植物生态学报, 35, 119-124.]
[24] Shan CJ, Liang ZS (2007). Effects of soil drought on root growth and physiological characteristics of winter wheat seedlings. Chinese Journal of Eco-Agriculture, 15(5), 38-41. (in Chinese with English abstract)
[24] [ 单长卷, 梁宗锁 (2007). 土壤干旱对冬小麦幼苗根系生长及生理特性的影响. 中国生态农业学报, 15(5), 38-41.]
[25] Sobrado MA (2000). Relation of water transport to leaf gas exchange properties in three mangrove species. Trees, 14, 258-262.
[26] Su B, Han XG, Li LH, Huang JH, Bai YF, Qu CM (2000). Responses of δ13C value and water use efficiency of plant species to environmental gradients along the grassland zone of Northeast China Transect. Acta Phytoecologica Sinica, 24, 648-655. (in Chinese with English abstract)
[26] [ 苏波, 韩兴国, 李凌浩, 黄建辉, 白永飞, 渠春梅 (2000). 中国东北样带草原区植物δ13C及水分利用效率对环境梯度的响应. 植物生态学报, 24, 648-655.]
[27] Toorchi M, Shashidhar HE, Hittalmani S, Gireesha TM (2002). Rice root morphology under contrasting moisture regimes and contribution of molecular marker heterozygosity. Euphytica, 126, 251-257.
[28] Wang JS, Li ZY (2011). Effects of drought stress on root morphology of tea. Journal of He’nan Agricultural Sciences, 40(9), 55-57. (in Chinese with English abstract)
[28] [ 王家顺, 李志友 (2011). 干旱胁迫对茶树根系形态特征的影响. 河南农业科学, 40(9), 55-57.]
[29] Wang LP, Yan ZY, Li JY, Wang JH, He Q, Su Y, Chen B, Ma JW, Dong JL (2012). Effects of exponential fertilization on biomass allocation and root morphology of Catalpa bungei clones. Acta Ecologica Sinica, 32, 7452-7462. (in Chinese with English abstract)
[29] [ 王力朋, 晏紫伊, 李吉跃, 王军辉, 何茜, 苏艳, 陈博, 马建伟, 董菊兰 (2012). 指数施肥对楸树无性系生物量分配和根系形态的影响. 生态学报, 32, 7452-7462.]
[30] Wang R, Li JY, Zhang FQ, Zhu B, Pan W (2011). Growing dynamic root system of Aquilaria malaccensis and Aquilaria sinensis seedlings in response to different fertilizing methods. Acta Ecologica Sinica, 31, 98-106. (in Chinese with English abstract)
[30] [ 王冉, 李吉跃, 张方秋, 朱报, 潘文 (2011). 不同施肥方法对马来沉香和土沉香苗期根系生长的影响. 生态学报, 31, 98-106.]
[31] Wang YN, Xiong W, Wang YH, Yu PT, Xu LH, Zuo HJ, Cao GX, Sun H (2012). A review on leaf water use efficiency of major trees species in arid and semi-arid area. World Forestry Research, 25(2), 17-23. (in Chinese with English abstract)
[31] [ 王云霓, 熊伟, 王彦辉, 于澎涛, 徐丽宏, 左海军, 曹恭祥, 孙浩 (2012). 干旱半干旱地区主要树种叶片水分利用效率研究综述. 世界林业研究, 25(2), 17-23.]
[32] Wang YT, Li JY, Liu P (2011). Study on leaf anatomical characteristics and drought resistance of the seven greening lianas. North Horticulture, (8), 111-114. (in Chinese with English abstract)
[32] [ 王玉涛, 李吉跃, 刘平 (2011). 七种藤本绿化植物叶解剖结构与抗旱性研究. 北方园艺, (8), 111-114.]
[33] Wright RA, Wein RA, Dancik BP (1992). Population differentiation in seedling root size between adjacent stands of jack pine. Forest Science, 38, 777-785.
[34] Yue GY, Zhang TH, Zhao HL, Niu L, Liu XP, Huang G (2006). Characteristics of sap flow and transpiration of Salix gordejevii and Caragana microphylla in Horqin sandy land, Northeast China. Acta Ecologica Sinica, 26, 3205-3213. (in Chinese with English abstract)
[34] [ 岳广阳, 张铜会, 赵哈林, 牛丽, 刘新平, 黄刚 (2006). 科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征. 生态学报, 26, 3205-3213.]
[35] Zhang CL, Fu ZS (2005). Impact of water stress on the root and shoot growth of litchi seedlings. Journal of Fruit Science, 22, 339-342. (in Chinese with English abstract)
[35] [ 张承林, 付子轼 (2005). 水分胁迫对荔枝幼树根系与梢生长的影响. 果树学报, 22, 339-342.]
[36] Zhang JH, Han HY, Lei YK, Yang WB, Li YH, Yang DF, Zhao XB (2012). Correlations between distribution characteristics of Artemisia ordosica root system and soil moisture under different fixation stage of sand dunes. Journal of Southwest Forestry University, 32(6), 1-5. (in Chinese with English abstract)
[36] [ 张军红, 韩海燕, 雷雅凯, 杨文斌, 李永华, 杨德福, 赵雪彬 (2012). 不同固定程度沙地油蒿根系与土壤水分特征研究. 西南林业大学学报, 32(6), 1-5.]
[37] Zheng SX, Shangguan ZP (2005). Variation in the δ13C value of typical plants of Loess Plateau over the last 70 years. Acta Phytoecologica Sinica, 29, 289-295. (in Chinese with English abstract)
[37] [ 郑淑霞, 上官周平 (2005). 近70年来黄土高原典型植物δ13C值变化研究. 植物生态学报, 29, 289-295.]
[38] Zhu LQ, Zhao LJ (2012). Anatomical structure of stem and leaf of Parashorea chinensis and its environmental adaptability. Chinese Agricultural Science Bulletin, 28, 98-102. (in Chinese with English abstract)
[38] [ 朱栗琼, 招礼军 (2012). 擎天树茎叶解剖结构及其环境适应性. 中国农学通报, 28, 98-102.]
文章导航

/