研究论文

内蒙古典型草原植物功能型对土壤甲烷吸收的影响

展开
  • 1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2中国科学院研究生院, 北京 100049
    3安徽师范大学生命科学学院, 安徽省重要生物资源保护与利用研究重点实验室, 安徽芜湖 241000
* E-mail: lw076@163.com

收稿日期: 2010-05-31

  录用日期: 2010-11-12

  网络出版日期: 2011-03-02

Plant functional type effects on methane uptake by soils in typical grasslands of Inner Mongolia

Expand
  • 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
    3Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China

Received date: 2010-05-31

  Accepted date: 2010-11-12

  Online published: 2011-03-02

摘要

甲烷(CH4)是仅次于CO2的重要温室气体。内蒙古草原是欧亚温带草原的重要类型, 具有典型的生态地域代表性。该文以内蒙古温带典型草原为研究对象, 通过人工剔除植物种的方法来确定群落中的植物功能型, 并应用静态箱技术, 观测土壤CH4的吸收, 以理解植物功能型对土壤CH4吸收的影响。结果表明: 1)土壤CH4的吸收受温度和水分变化的影响, 具有明显的季节差异, 且与温度显著相关。2)在2008年和2009年所测的大部分月份中, 植物功能型的土壤CH4吸收量之间没有显著差异; 然而在植物生长旺季(8月), 不同植物功能型的土壤CH4吸收量之间存在显著差异, 多年生丛生禾草的土壤CH4吸收量最小。3)处理中一、二年生植物、多年生杂类草的存在能够增加土壤CH4的吸收量, 而处理中多年生根茎类禾草、多年生丛生禾草的存在对土壤CH4吸收的影响不大。这可能是因为, 植物功能型影响土壤的微生物代谢和环境因子, 进而影响土壤CH4吸收量。该试验说明, 在痕量气体层面上, 植物功能型组成在生态系统功能中具有重要作用, 特别是群落中的亚优势种和伴生种(一、二年生植物、多年生杂类草), 通过调控土壤微生物和环境因子, 对地-气的CH4交换产生重要影响。

本文引用格式

刘伟, 王继明, 王智平 . 内蒙古典型草原植物功能型对土壤甲烷吸收的影响[J]. 植物生态学报, 2011 , 35(3) : 275 -283 . DOI: 10.3724/SP.J.1258.2011.00275

Abstract

Aims Methane (CH4) is an important atmospheric trace gas contributing to global warming and atmospheric chemistry. Aerated soils are a biological sink for atmospheric CH4. Our objectives were to quantify CH4 uptake by soils in typical grasslands of Inner Mongolia and examine the effects of plant functional type on the uptake.
Methods We used static chamber sampling and gas chromatography measurement to examine the effects of four plant functional types (PFTs) ― perennial rhizome forbs (PR), perennial bunchgrass (PB), perennial forb (PF) and annuals and biennials (AB) ― on CH4 uptake by aerated soils.
Important findings CH4 uptake by soils showed seasonal change related to soil water content and temperature. Over most of observed periods in 2008 and 2009, there were no significant differences in soil CH4 uptake rates among the various PFTs. During rapid plant growth in August, however, there were significant differences in the soil CH4 uptake rates. The soil CH4 uptake rates were lower with PBs. AB and PF increased the uptake of CH4 by soils, while PR and PB had little influence. Soil physico-chemical factors such as temperature, water content and gas diffusion affect CH4 uptake. Differences in CH4 uptake rates by soils may be explained using these environmental factors affected by PFTs. With regard to trace gas, PFT has prominent effects on this ecosystem. Sub-dominant species and companion species (AB and PF), by regulating soil microbe and environmental factors, have important and irreplaceable roles on the uptake of CH4 by soils.

参考文献

[1] Bai YF (白永飞), Xu ZX (徐志信) (1994). Study on dynamics of growing of 9 herbage in typical grassland. Grassland of China (中国草地), 6, 21-27. (in Chinese with English abstract)
[2] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
[3] Bender M, Conrad R (1995). Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology and Biochemistry, 27, 1517-1527.
[4] Cao GM, Xu XL, Long RJ, Wang QL, Wang CT, Du YG, Zhao XQ (2008). Methane emissions by alpine plant comm- unities in the Qinghai-Tibet Plateau. Biology Letters, 4, 681-684.
[5] Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997). Biotic control over the functioning of ecosystems. Science, 277, 500-504.
[6] Chasar LS, Chanton JP, Glaser PH, Siegel DI (2000). Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake agassiz peatland complex. Annals of Botany, 86, 655-663.
[7] Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75.
[8] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
[9] Cui XY (崔骁勇), Chen ZZ (陈佐忠), Du ZC (杜占池) (2001). Study on light- and water-use characteristics of main plants in semiarid steppe. Acta Prataculturae Sinica (草业学报), 10(2), 14-21. (in Chinese with English abstract)
[10] de Deyn GB, Cornelissen HC, Bardgett RD (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516-531.
[11] Epstein HE, Burke IC, Mosier AR, Hutchinson GL (1998). Plant functional type effects on trace gas fluxes in the shortgrass steppe. Biogeochemistry, 42, 145-168.
[12] H?ttenschwiler S, Tiunov AV, Scheu S (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology Evolution and Systematics, 36, 191-218.
[13] Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000). Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 90, 357-371.
[14] Hooper DU, Vitousek PM (1997). The effects of plant composition and diversity on ecosystem processes. Science, 277, 1302-1305.
[15] IPCC (Intergovernmental Panel on Climate Change)(2007). Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[16] Ji BM (纪宝明), Wang YF (王艳芬), Li XZ (李香真), Wang YS (王跃思), Chen ZZ (陈佐忠), Zheng XH (郑循华) (2001). CH4 and CO2 concentration in soils of the major grasslands of the Xilin River Basin of Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 25, 371-374. (in Chinese with English abstract)
[17] LeCain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH (2002). Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado. Agriculture, Ecosystems and Environment, 93, 421-435.
[18] Liu CY, Holst J, Bruggemann N, Butterbach-Bahl K, Yao ZS, Yue J, Han SH, Han XG, Krummelbein J, Horn R, Zheng XH (2007). Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 41, 5948-5958.
[19] Liu CY, Holst J, Yao ZS, Bruggemann N, Butterbach-Bahl K, Han SH, Han XG, Tas B, Susenbeth A, Zheng XH (2009). Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 43, 3086-3095.
[20] Niklaus PA, Wardle DA, Tate KR (2006). Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils. Plant and Soil, 282, 83-98.
[21] Sun HL (孙鸿烈) (2005). Ecosystem of China (中国生态系统). Science Press, Beijing. (in Chinese)
[22] Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
[23] Wang SP, Yang XX, Lin XW, Hu YG, Luo CY, Xu GP, Zhang ZH, Su AL, Chang XF, Chao ZG, Duan JC (2009a). Methane emission by plant communities in an alpine meadow on the Qinghai-Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. Biology Letters, 5, 535-538.
[24] Wang YF (王艳芬), Ji BM (纪宝明), Chen ZZ (陈佐忠), Ojma D (2000). Preliminary results of a study on CH4 flux in Xilin River Basin steppe under different grazing intensities. Acta Phytoecologica Sinica (植物生态学报), 24, 693-696. (in Chinese with English abstract)
[25] Wang YS, Hu YQ, Ji BM, Liu GR, Xue M (2003). An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland. Advances in Atmospheric Sciences, 20, 119-127.
[26] Wang YS, Xue M, Zheng XH, Ji BM, Du R, Wang YF (2005a). Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 58, 205-215.
[27] Wang ZP (王智平), Hu CS (胡春胜), Yang JR (杨居荣) (2003). Effect of inorganic nitrogen on CH4 oxidation in soils. Chinese Journal of Applied Ecology (应用生态学报), 14, 305-309. (in Chinese with English abstract)
[28] Wang ZP, Han XG, Li LH, Chen QS, Duan Y, Cheng WX (2005b). Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research, 110, D13304, doi: 10.1029/2004-JD005548.
[29] Wang ZP, Song Y, Gulledge J, Yu Q, Liu HS, Han XG (2009b). China’s grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 43, 2148-2153.
[30] Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009). Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology, 23, 454-462.
[31] Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999). Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs, 69, 535-568.
[32] Wardle DA, Zackrisson O (2005). Effects of species and functional group loss on island ecosystem properties. Nature, 435, 806-810.
[33] Wei ZJ (卫智军), Gao YD (高雅代), Yuan XD (袁晓冬), Meng R (蒙荣), Ji JP (纪家鹏) (2003). Response of population feature to different grazing systems in typical steppe. Grassland of China (中国草地), 25(6), 1-5. (in Chinese with English abstract)
[34] West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH III, Babcock S, Lai RS, Schmidt SK (1999). Landscape patterns of CH4 flux in an alpine tundra ecosystem. Biogeochemistry, 45, 243-264.
文章导航

/