种子异型植物异子蓬的生殖分配和结实格局
收稿日期: 2012-03-02
录用日期: 2012-05-03
网络出版日期: 2012-09-06
Reproductive allocation and fruit-set pattern of seed-heteromorphic plant Suaeda aralocaspica
Received date: 2012-03-02
Accepted date: 2012-05-03
Online published: 2012-09-06
选择能产生异型果实和种子的一年生盐生植物异子蓬(Suaeda aralocaspica)为研究对象, 研究其生殖分配和结实格局。结果表明, 异子蓬具有较高的生殖分配和规律性的“谨慎型”结实格局。异子蓬的生殖分配高达56%。在资源充裕时, 该植物对扁圆形棕色种子(采取机会主义的萌发策略)的投资多于双凸镜形黑色种子(采取谨慎的萌发策略)的投资。异子蓬的花序类型为二歧聚伞花序, 单个果序含果实(种子)的数目为1-15个, 最多可分为4级。果序内果实的分布具有一定的规律: 第一级1个果实, 第二级2个, 第三级4个, 第四级8个。异子蓬优先将资源供给黑色种子的果实, 利用不同类型种子的发育顺序, 首先保证黑色种子的产出。具有较高的生殖分配和采取“谨慎”的生殖策略是异子蓬与其所处盐漠环境长期适应的结果。
王雷, 董鸣, 黄振英 . 种子异型植物异子蓬的生殖分配和结实格局[J]. 植物生态学报, 2012 , 36(9) : 948 -955 . DOI: 10.3724/SP.J.1258.2012.00948
Aims Suaeda aralocaspica is an annual halophyte native to the inland salt desert of the Junggar Basin, Xinjiang, China. It produces two clearly defined types of fruits and seeds on the same plant. Our objective was to investigate reproductive allocation and fruit-set pattern of this species.
Methods We randomly selected 11 plants of S. aralocaspica in a population and measured the canopy diameter, shoot length, and root length and biomass allocation. We randomly selected 30 primal branches, 30 secondary branches and 30 tertiary branches, and then counted the fruit number for different node sites. We also determined the position of each fruit (seed) in the infructescence for three consecutive growing seasons.
Important findings Suaeda aralocaspica had high biomass allocation to reproductive organs and a regular fruit-set pattern that is a cautious strategy. The reproductive allocation of biomass in S. aralocaspica plants reached 56%, which is much higher than that of most annual and perennial plants. A greater proportion of biomass was allocated to oblate brown seeds (opportunistic germination strategy) than to elliptical black seeds (cautious germination strategy). The inflorescence (dichasium) may contain from one to fifteen fruits in one to four orders. The first order contains a single fruit, the second order two fruits, the third four and the fourth eight. Suaeda aralocaspica allocated resources first to black-seeded fruits. Thus, S. aralocaspica has high reproductive allocation and a cautious reproductive strategy that is adapted to the salt desert.
1 | Bazzaz FA, Carlson RW, Harper JL ( 1979). Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature, 279, 554-555. |
2 | Boyd CN, Franceschi VR, Chuong SDX, Akhani H, Kiirats O, Smith M, Edwards GE ( 2007). Flowers of Bienertia cycloptera and Suaeda aralocaspica( Chenopodiaceae) complete the life cycle performing single-cell C4 photosynthesis. Functional Plant Biology, 34, 268-281. |
3 | Cheplick GP ( 1987). The ecology of amphicarpic plants. Trends in Ecology and Evolution, 2, 97-101. |
4 | Cheplick GP, Quinn JA ( 1982). Amphicarpum purshii and the “pessimistic strategy” in amphicarpic annuals with subterranean fruit. Oecologia, 52, 327-332. |
5 | Diggle PK ( 1995). Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 26, 531-552. |
6 | Fang YM ( 方炎明 ) (1996). Plant Reproductive Ecology (植物生殖生态学). Shandong University Press, Ji’nan. (in Chinese) |
7 | Fang YM ( 方炎明), Zhang XP ( 张晓平), Wang ZS ( 王中生 ) ( 2004). Reproductive ecology of Liriodendron chinense: reproductive allocation and life-history strategy. Journal of Nanjing Forestry University (Natural Sciences Edition) ( 南京林业大学学报(自然科学版)), 28(3), 71-74. (in Chinese with English abstract) |
8 | Gao R ( 高蕊), Wei Y ( 魏岩 ) ( 2007). Amphicarpy of Ceratocarpus arenarius (Chenopodiaceae) in Junggar desert. Acta Botanica Yunnanica (云南植物研究), 29, 300-302. (in Chinese with English abstract) |
9 | Gutterman Y ( 2002). Survival Strategies of Annual Desert Plants. Springer-Verlag, Berlin. |
10 | Harper JL (1977). Population Biology of Plants. Academic Press, London. |
11 | Imbert E ( 2002). Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36. |
12 | Imbert E, Escarré J, Lepart J ( 1996). Achene dimorphism and among-population variation in Crepis sancta(Asteraceae). International Journal of Plant Sciences, 157, 309-315. |
13 | Lee TD ( 1989). Patterns of fruit and seed production in a Vermont population of Cassia nictitans L.( Caesalpiniaceae). Bulletin of the Torrey Botanical Club, 116, 15-21. |
14 | Li AR ( 李安仁 ) (1979). Flora of China, Tomus 25 No. 2 (中国植物志第二十五卷第二分册). Science Press, Beijing, 114. (in Chinese) |
15 | Mandák B ( 1997). Seed heteromorphism and the life cycle of plants: a literature review. Preslia, 69, 129-159. |
16 | Mandák B, Py?ek P ( 1999). Effects of plant density and nutrient levels on fruit polymorphism in Atriplex sagittata. Oecologia, 119, 63-72. |
17 | Mandák B, Py?ek P ( 2001). Fruit dispersal and seed banks in Atriplex sagittata: the role of heterocarpy. Journal of Ecology, 89, 159-165. |
18 | Mao ZM ( 毛祖美 ) (1994). Flora Xinjiangensis, Tomus 2 No. 1 (新疆植物志第二卷第一分册). Xinjiang Science & Technology & Hygiene Publishing House, ürümqi, 57. (in Chinese) |
19 | Ruiz de Clavijo E, Jiménez MJ ( 1998). The influence of achene type and plant density on growth and biomass allocation in the heterocarpic annual Catanache lutea(Asteraceae). International Journal of Plant Sciences, 159, 637-647. |
20 | Sadeh A, Guterman H, Gersani M, Ovadia O ( 2009). Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evolutionary Ecology, 23, 373-388. |
21 | Silvertown JW (1982). Introduction to Plant Population Ecology. Longman Press, London. |
22 | Stephenson AG ( 1981). Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253-279. |
23 | Sun HZ ( 孙华之), Tan DY ( 谭敦炎), Qu RM ( 曲荣明 ) ( 2008). Characteristics of heteromorphic achenes of Garhadiolus papposus, an ephemeral Asteraceae species, with reference to their adaptations to desert environment. Biodiversity Science (生物多样性), 16, 353-361. (in Chinese with English abstract) |
24 | Venable DL ( 1985). The evolutionary ecology of seed heteromorphism. The American Naturalist, 126, 577-595. |
25 | Wang HF ( 王宏飞), Wei Y ( 魏岩 ) ( 2007). Seed polymorphism and fruit-set patterns of Salsola affinis. Biodiversity Science (生物多样性), 15, 419-424. (in Chinese with English abstract) |
26 | Wang L ( 王雷 ) ( 2010). Regeneration Strategies of Plant Populations in Salt Temperate Desert: Adaptation Analysis of Suaeda aralocaspica Seed (温带内陆盐漠植物种群更新策略-异子蓬种子的适应性分析). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
27 | Wang L ( 王雷), Dong M ( 董鸣), Huang ZY ( 黄振英 ) ( 2010). Review of research on seed heteromorphism and its ecological significance. Chinese Journal of Plant Ecology (植物生态学报), 34, 578-590. (in Chinese with English abstract) |
28 | Wang L, Huang ZY, Baskin CC, Baskin JM, Dong M ( 2008). Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica(Chenopodiaceae), a C4 plant without Kranz anatomy. Annals of Botany, 102, 757-769. |
29 | Webb CJ, Bawa KS ( 1985). Patterns of fruit and seed production in Bauhinia ungulata(Leguminosae). Plant Systematics and Evolution, 151, 55-65. |
30 | Wu XL ( 吴雪莲 ) ( 2006). Fruit Polymorphism with Reference to Its Ecological Adaptive Strategy in Ephemeral Diptychocarpus strictus (短命植物异果芥的果实多态性及其生态适应对策研究). Master degree dissertation, Xinjiang Agricultural University, ürümqi. (in Chinese with English abstract) |
31 | Zhang DY ( 张大勇 ) (2004). Plant Life-History Evolution and Reproductive Ecology (植物生活史进化与繁殖生态学). Science Press, Beijing. (in Chinese) |
/
〈 |
|
〉 |