研究论文

西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系

展开
  • 1中国林业科学研究院森林生态环境与保护研究所, 北京 100091
    2电子科技大学资源与环境学院, 成都 611731

收稿日期: 2019-10-22

  录用日期: 2020-03-02

  网络出版日期: 2020-05-30

基金资助

国家重点研发计划(2017YFC0505006)

Spatio-temporal characteristics of vegetation water use efficiency and their relationships with climatic factors in alpine and subalpine area of southwestern China

Expand
  • 1Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
    2School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China

Received date: 2019-10-22

  Accepted date: 2020-03-02

  Online published: 2020-05-30

Supported by

National Key R&D Program of China(2017YFC0505006)

摘要

水分利用效率(WUE)是深入理解生态系统水碳循环及其耦合关系的重要指标。为了揭示气候变化背景下区域尺度不同植被类型的响应和适应特征, 对中国西南高山亚高山地区2000-2014年的9种植被类型的WUE时空特征及其影响因素进行探究。该研究基于MODIS总初级生产力(GPP)、蒸散发(ET)数据和气象数据, 估算西南高山亚高山区植被WUE, 采用趋势分析及相关分析等方法, 分析了研究区植被WUE与气温、降水及海拔的关系。主要结果: (1)西南高山亚高山区2000-2014年植被WUE多年均值为0.95 g·m-2·mm-1, 整体呈显著增加趋势, 增速为0.011 g·m-2·mm-1·a-1; 空间上WUE呈东南高西北低的分布, 85.84%区域的WUE呈增加趋势。(2)西南高山亚高山区各植被类型WUE多年均值表现为常绿针叶林>稀树草原>常绿阔叶林>有林草原>农田>落叶阔叶林>混交林>郁闭灌丛>草地; 时间上, 各植被类型WUE均呈上升趋势。(3)西南高山亚高山区89.56%区域的WUE与气温正相关, 92.54%区域的WUE与降水量负相关; 各植被类型中, 草地WUE与气温的相关性最高, 有林草原WUE与降水量的相关性最高。(4)西南高山亚高山区典型的地带性顶极植被常绿针叶林的WUE具有较强的海拔适应性及应对气候变化的能力。

本文引用格式

周雄, 孙鹏森, 张明芳, 刘世荣 . 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020 , 44(6) : 628 -641 . DOI: 10.17521/cjpe.2019.0281

Abstract

Aims Water use efficiency (WUE) is an important indicator for understanding the coupling and trade-off relationships between ecosystem water and carbon cycles. In order to reveal the response and adaptation characteristics of different vegetation types to climate change regionally, we examined the trends, altitudinal distributions, and spatial variations of WUE in nine vegetation types in the alpine and subalpine area of southwestern China during the period of 2000-2014.
Methods We estimated the vegetation WUE using Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) and evapotranspiration (ET) products, and the gridded climate data interpolated from Aunsplin. Trend analysis and correlation analysis were conducted to examine the relationships between vegetation WUE and other factors, including air temperature, precipitation, and elevation.
Important findings The results showed that: (1) The average annual WUE in the study region was 0.95 g·m-2·mm-1 with a significantly increasing trend at 0.011 g·m-2·mm-1·a-1 from 2000 to 2014. The average WUE showed a pattern of higher in the southeast region but lower in the northwest region, and the WUE was found increased in 85.84% of study area. (2) The average WUEs were increasing in all vegetation types, and the WUEs showed a gradient of evergreen needleleaf forest > savannas > evergreen broadleaf forest > woody savannas > cropland > deciduous broadleaf forest > mixed forest > closed shrublands > grassland. (3) The WUE was positively correlated with air temperature in 89.56% of the study area, but it was negatively correlated with precipitation in 92.54% of the study area. The highest correlation between WUE and air temperature was found in grassland, while the highest correlation between WUE and precipitation was identified in woody savannas. (4) As the regional climax vegetation type in southwestern China, the evergreen needleleaf forest’s WUE has high adaptation abilities to both altitudinal change and climate change.

参考文献

[1] Chen XJ, Mo XG, Hu S, Liu SX (2017). Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014. Journal of Geographical Sciences, 27, 661-680.
[2] Creed IF, Spargo AT, Jones JA, Buttle JM, Adams MB, Beall FD, Booth EG, Campbell JL, Clow D, Elder K, Green MB, Grimm NB, Miniat C, Ramlal P, Saha A, Sebestyen S, Spittlehouse D, Sterling S, Williams MW, Winkler R, Yao HX (2014). Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America. Global Change Biology, 20, 3191-3208.
[3] Cregg BM, Zhang JW (2001). Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. Forest Ecology and Management, 154, 131-139.
[4] Cui J, An SQ, Wang ZS, Fang CM, Liu YH, Yang HB, Xu Z, Liu SR (2009). Using deuterium excess to determine the sources of high-altitude precipitation: implications in hydrological relations between sub-alpine forests and alpine meadows. Journal of Hydrology, 373, 24-33.
[5] Du XZ, Zhao X, Wang HY, He B (2018). Responses of terrestrial ecosystem water use efficiency to climate change: areview. Acta Ecologica Sinica, 38, 8296-8305.
[5] [ 杜晓铮, 赵祥, 王昊宇, 何斌 (2018). 陆地生态系统水分利用效率对气候变化的响应研究进展. 生态学报, 38, 8296-8305.]
[6] Feng XM, Fu BJ, Piao SL, Wang S, Ciais P, Zeng ZZ, Lü YH, Zeng Y, Li Y, Jiang XH, Wu BF (2016). Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6, 1019-1022.
[7] Gang C, Wang Z, Zhou W, Chen Y, Li J, Chen J, Qi J, Odeh I, Groisman PY (2016). Assessing the spatiotemporal dynamic of global grassland water use efficiency in response to climate change from 2000 to 2013. Journal of Agronomy and Crop Science, 202, 343-354.
[8] Gu FX, Pang R, Zhang YD, Huang M, Li J, Hao WP, Mei XR (2014). Temporal-spatial variations of soil organic carbon and their responses to climate change in alpine area of southwest China during 1954-2010. Journal of Natural Resources, 29, 1930-1943.
[8] [ 顾峰雪, 庞瑞, 张远东, 黄玫, 李洁, 郝卫平, 梅旭荣 (2014). 1954-2010年西南高山地区土壤碳储量时空动态及对气候变化的响应. 自然资源学报, 29, 1930-1943.]
[9] Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ (2012). Forest phenology and a warmer climate-growing season extension in relation to climatic provenance. Global Change Biology, 18, 2008-2025.
[10] Guo LM, Sun FB, Liu WB, Zhang YG, Wang H, Cui HJ, Wang HQ, Zhang J, Du BX (2019). Response of ecosystem water use efficiency to drought over China during 1982-2015: spatiotemporal variability and resilience. Forests, 10, 598. DOI: 10.3390/f1007059.
[11] Heinsch FA, Reevrs M, Votava P, Kang SY, Milesi C, Zhao MS, Glassy J, Jolly WM, Loehman R, Bowker CF, Kimball JS, Nemani RR, Running SW (2003). GPP and NPP (MOD17A2/A3) Products, NASA MODIS Land Algorithm. MOD17 User’s Guide, 1-57.
[12] Heitman JL, Horton R, Sauer TJ, DeSutter TM (2008). Sensible heat observations reveal soil-water evaporation dynamics. Journal of Hydrometeorology, 9, 165-171.
[13] Hu ZM, Yu GR, Fan JW, Zhong HP, Wang SQ, Li SG (2010). Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19, 842-851.
[14] Hu ZM, Yu GR, Fu YL, Sun XM, Li YN, Shi PL, Wang YF, Zheng ZM (2008). Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology, 14, 1609-1619.
[15] Hu ZM, Yu GR, Wang QF, Zhao FH (2009). Ecosystem level water use efficiency: a review. Acta Ecologica Sinica, 29, 1498-1507.
[15] [ 胡中民, 于贵瑞, 王秋凤, 赵风华 (2009). 生态系统水分利用效率研究进展. 生态学报, 29, 1498-1507.]
[16] Ito A, Inatomi M (2012). Water-use efficiency of the terrestrial biosphere: a model analysis focusing on interactions between the global carbon and water cycles. Journal of Hydrometeorology, 13, 681-694.
[17] Jackson RB, Jobbágy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, Le Maitre DC, McCarl BA, Murray BC (2005). Trading water for carbon with biological carbon equestration. Science, 310, 1944-1947.
[18] Jia ZZ, Liu SM, Xu ZW, Chen YJ, Zhu MJ (2012). Validation of remotely sensed evapotranspiration over the Hai River Basin, China. Journal of Geophysical Research, 117, D13113. DOI: 10.1029/2011JD017037.
[19] Korner C, Basler D (2010). Phenology under global warming. Science, 327, 1461-1462.
[20] Li XJ, Zhang FP, Wang HW, Lei SJ, Gao Z (2017). Analysis of the spatio-temporal characteristics of water-use efficiency of vegetation and its relationship with climate in the Heihe River Basin. Journal of Desert Research, 37, 733-741.
[20] [ 李肖娟, 张福平, 王虎威, 雷声剑, 高张 (2017). 黑河流域植被水分利用效率时空变化特征及其与气候因子的关系. 中国沙漠, 37, 733-741.]
[21] Li YH, Xue C (2017). Analysis of interannual variation characteristics of runoff in Zipingpu Reservoir. Sichuan Water Power, 36, 113-115, 132.
[21] [ 黎永红, 薛晨 (2017). 紫坪铺水库入库径流年际变化特征分析. 四川水力发电, 36, 113-115, 132.]
[22] Liu Q, Wu N, Pan KW, Liu ZG, Chen QH (1999). Subalpine forest in the upper reaches of the Yangtze River and its environmental effects and reconstruction countermeasures// Xu HZ, Zhao QG. Flood Disasters in the Yangtze River Basin and Scientific and Technological Countermeasures. Science Press, Beijing. 79-83.
[22] [ 刘庆, 吴宁, 潘开文, 刘照光, 陈庆恒 (1999). 长江上游亚高山森林及其环境效应重建对策//许厚泽, 赵其国. 长江流域洪涝灾害与科技对策. 科学出版社, 北京. 79-83.]
[23] Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Sci-Tech R&D, 23, 63-69.
[23] [ 刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23, 63-69.]
[24] Liu XF, Hu BY, Ren ZY (2018). Spatiotemporal variation of water use efficiency and its driving forces on the Loess Plateau during 2000-2014. Scientia Agricultura Sinica, 51, 302-314.
[24] [ 刘宪锋, 胡宝怡, 任志远 (2018). 黄土高原植被生态系统水分利用效率时空变化及驱动因素. 中国农业科学, 51, 302-314.]
[25] Liu YB, Xiao JF, Ju WM, Zhou YL, Wang SQ, Wu XC (2015). Water use efficiency of China’s terrestrial ecosystems and responses to drought. Scientific Reports, 5, 13799-13811.
[26] Liu YJ, Tao FL (2013). Response of crop water use efficiency to elevated temperature and CO2 concentration—A review. Progress in Geography, 32, 416-424.
[26] [ 刘玉洁, 陶福禄 (2013). 作物水分利用效率对温度和CO2浓度升高的响应研究进展. 地理科学进展, 32, 416-424.]
[27] Lu XL, Zhuang QL (2010). Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sensing of Environment, 114, 1924-1939.
[28] Monteith JL (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205-234.
[29] Mu QZ, Zhao MS, Running SW (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115, 1781-1800.
[30] Niu ZE, He HL, Zhu GF, Ren XL, Zhang L, Zhang K, Yu GR, Ge R, Li P, Zeng N, Zhu XB (2019). An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agricultural and Forest Meteorology, 279, 107701. DOI: 10.1016/j.agrformet.2019.107701.
[31] Pang J, Qin J (2013). Advances in characteristics and causes of drought research in southwest China. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 5(2), 127-134.
[31] [ 庞晶, 覃军 (2013). 西南干旱特征及其成因研究进展. 南京信息工程大学学报(自然科学版), 5(2), 127-134.]
[32] Pei TT, Li XY, Wu HW, Wu XC, Chen Y, Xie BP (2019). Sensitivity of vegetation water use efficiency to climate and vegetation index in Loess Plateau, China. Transactions of the Chinese Agricultural Engineering, 35, 119-125, 319.
[32] [ 裴婷婷, 李小雁, 吴华武, 吴秀臣, 陈英, 谢保鹏 (2019). 黄土高原植被水分利用效率对气候和植被指数的敏感性研究. 农业工程学报, 35, 119-125, 319.]
[33] Ponce-Campos GE, Moran MS, Huete A, Zhang YG, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA, Scalley TH, Kitchen SG, McClaran MP, McNab WH, Montoya DS, Morgan JA, Peters DPC, Sadler EJ, Seyfried MS, Starks PJ (2013). Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494, 349-352.
[34] Qiu KB, Cheng JF (2015). Vegetation water use efficiency and its relationship with climate in Shaanxi Province. Research of Soil and Water Conservation, 22(6), 256-260.
[34] [ 仇宽彪, 成军峰 (2015). 陕西省植被水分利用效率及与气候因素的关系. 水土保持研究, 22(6), 256-260.]
[35] Sun PS, Liu N, Liu SR, Sun G (2016). Trade-offs between water yield and carbon sequestration for sub-alpine catchments in western Sichuan, China. Chinese Journal of Plant Ecology, 40, 1037-1048.
[35] [ 孙鹏森, 刘宁, 刘世荣, 孙阁 (2016). 川西亚高山流域水碳平衡研究. 植物生态学报, 40, 1037-1048.]
[36] Sun Y, Piao SL, Huang MT, Ciais P, Zeng ZZ, Cheng L, Li XR, Zhang XP, Mao JF, Peng SS, Poulter B, Shi XY, Wang XH, Wang YP, Zeng H (2016). Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models. Global Ecology and Biogeography, 25, 311-323.
[37] Tang XG, Li HP, Desai AR, Nagy Z, Luo JH, Kolb TE, Olioso A, Xu XB, Yao L, Kutsch W, Pilegaard K, K?stner B, Ammann C (2014). How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Scientific Reports, 4, 7483. DOI: 10.1038/srep07483.
[38] Tian HQ, Chen GS, Liu ML, Zhang C, Sun G, Lu CQ, Xu XF, Ren W, Pan SF, Chappelka A (2010). Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. Forest Ecology and Management, 259, 1311-1327.
[39] Wang F, Jiang H, Zhang XM (2015). Spatial-temporal dynamics of gross primary productivity, evapotranspiration, and water-use efficiency in the terrestrial ecosystems of the Yangtze River Delta region and their relations to climatic variables. International Journal of Remote Sensing, 36, 2654-2673.
[40] Wei HJ, Zhang YF, Dong XB, Lu NC, Wang XC (2016). Estimating the spatio-temporal characteristic of vegetation water use efficiency over Weihe River Basin. Journal of Natural Resources, 31, 1275-1288.
[40] [ 位贺杰, 张艳芳, 董孝斌, 鲁纳川, 王雪超 (2016). 渭河流域植被WUE遥感估算及其时空特征. 自然资源学报, 31, 1275-1288.]
[41] Wu GJ, Liu XH, Chen T, Xu GB, Wang WZ, Zeng XM, Zhang XW (2015). Elevation-dependent variations of tree growth and intrinsic water-use efficiency in Schrenk spruce ( Picea schrenkiana) in the western Tianshan Mountains, China. Frontiers in Plant Science, 6, 309. DOI: 103389/fps.2015.00309.
[42] Xue BL, Guo QH, Otto A, Xiao JF, Tao SL, Li L (2015). Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. Ecosphere, 6, 174. DOI: 10.1890/ES14-00416.1.
[43] Ye H, Wang JB, Huang M, Qi SH (2012). Spatial pattern of vegetation precipitation use efficiency and its response to precipitation and temperature on the Qinghai-Xizang Plateau of China. Chinese Journal of Plant Ecology, 36, 1237-1247.
[43] [ 叶辉, 王军邦, 黄玫, 齐述华 (2012). 青藏高原植被降水利用效率的空间格局及其对降水和气温的响应. 植物生态学报, 36, 1237-1247.]
[44] Zhang LX, Hu ZM, Fan JW, Shao QQ, Tang FP (2014). Advances in the spatiotemporal dynamics in ecosystem water use efficiency at regional scale. Advances in Earth Science, 29, 691-699.
[44] [ 张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛 (2014). 区域尺度生态系统水分利用效率的时空变异特征研究进展. 地球科学进展, 29, 691-699.]
[45] Zhang YD, Pang R, Gu FX, Liu SR (2016). Temporal-spatial variations ofWUE and its response to climate change in alpine area of southwestern China. Acta Ecologica Sinica, 36, 1515-1525.
[45] [ 张远东, 庞瑞, 顾峰雪, 刘世荣 (2016). 西南高山地区水分利用效率时空动态及其对气候变化的响应. 生态学报, 36, 1515-1525.]
[46] Zhang Z, Jiang H, Liu JX, Zhou GM, Liu SR, Zhang XY (2012). Assessment on water use efficiency under climate change and heterogeneous carbon dioxide in China terrestrial ecosystems. Procedia Environmental Sciences, 13, 2031-2044.
[47] Zhao AZ, Zhang AB, Feng LL, Wang DL, Cheng DY (2019). Spatio-temporal characteristics of water-use efficiency and its relationship with climatic factors in the Haihe River Basin. Acta Ecologica Sinica, 39, 1452-1462.
[47] [ 赵安周, 张安兵, 冯莉莉, 王冬利, 承达瑜 (2019). 海河流域生态水分利用效率时空变化及其与气候因子的相关性分析. 生态学报, 39, 1452-1462.]
[48] Zhao MS, Heinsch FA, Nemani RR, Running SW (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95, 164-176.
[49] Zheng D (2012). Dictionary of Geographic Regionalization and Planning. China Water & Power Press, Beijing.
[49] [ 郑度 (2012). 地理区划与规划词典. 中国水利水电出版社, 北京.]
[50] Zheng H, Lin H, Zhou WJ, Bao H, Zhu XJ, Jin Z, Song Y, Wang YQ, Liu WZ, Tang YK (2019). Revegetation has increased ecosystem water-use efficiency during 2000-2014 in the Chinese Loess Plateau: evidence from satellite data. Ecological Indicators, 102, 507-518.
[51] Zou J, Ding JL (2019). Changes of water use efficiency of main vegetation types in Central Asia from 2000 to 2014. Scientia Silvae Sinicae, 55(3), 175-182.
[51] [ 邹杰, 丁建丽 (2019). 2000-2014年中亚地区主要植被类型水分利用效率特征. 林业科学, 55(3), 175-182.]
[52] Zou J, Ding JL, Qin Y, Wang F (2018). Response of water use efficiency of Central Asia ecosystem to drought based on remote sensing data. Transactions of the Chinese Agricultural Engineering, 34, 145-152, 313-314.
[52] [ 邹杰, 丁建丽, 秦艳, 王飞 (2018). 遥感分析中亚地区生态系统水分利用效率对干旱的响应. 农业工程学报, 34, 145-152, 313-314.]
文章导航

/